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Abstract Result rankings from context-aware information retrieval are inherently dy-

namic, as the same query can lead to significantly different outcomes in different con-

texts. For example, the search term Digital Camera will lead to different – albeit poten-

tially overlapping – results in the contexts Customer Reviews and Shops, respectively.

The comparison of such result rankings can provide useful insights into the effects of

context changes on the information retrieval results. In particular, the impact of single

aspects of the context in complex applications can be analyzed to identify the most

(and least) influential context parameters. While a multitude of methods exists for

assessing the relevance of a result ranking with respect to a given query, the question

how different two result rankings are from a user’s point of view has not been tack-

led so far. This paper introduces DIR, a cognitively plausible dissimilarity measure

for information retrieval result sets that is based solely on the results and thus appli-

cable independently of the retrieval method. Unlike statistical correlation measures,

this dissimilarity measure reflects how human users quantify the changes in informa-

tion retrieval result rankings. The DIR measure supports cognitive engineering tasks

for information retrieval, such as work flow and interface design: Using the measure,

developers can identify which aspects of context heavily influence the outcome of the

retrieval task and should therefore be in the focus of the user’s interaction with the sys-

tem. The cognitive plausibility of DIR has been evaluated in two human participants

tests, which demonstrate a strong correlation with user judgments.
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1 Introduction

User interaction with information retrieval (IR) results has been in the focus of re-

search activities since the broad breakthrough of Web search engines. Complementary

to existing approaches to assess the quality of search results for a given query [18],

this research area concentrates on the presentation of results to the users and their in-

teraction with them [3, chapter 10] and has been coined human-computer information

retrieval (HCIR) [27]. A second trend within IR research is context-aware information

retrieval (CAIR), focusing on the adaptation of IR results to personal interests and

preferences, the user’s current location and other context information relevant to the

given task [6]. Changes of context can cause an adaptation of the result ranking for a

given query, so that the same query does not necessarily always lead to the same result

[13].

Consider the example of a search for Pizza on Google Maps shown in Figure 1.

The top two screen shots show a map-based search in Münster, Germany, near central

station, but with a slightly different map extent. The corresponding top results shown

on the left have five matches in common, but in partly different order. The remaining

matches are different in the two rankings. For the bottom screen shot, the spatial

context has been moved to the area around Alexanderplatz in Berlin. Evidently, the

results in the top two screen shots are very much alike, whereas the ranking in the

bottom one is completely different from the other two. However, there is no existing

measurement method that allows for the quantification of the difference between such

result rankings from a user’s perspective.

Comparisons of result rankings stemming from the same query posed in different

contexts can provide useful insights into the effects of context changes on the IR re-

sults. While the context for the pizza example consists only of the selected map extent,

applications such as a surf spot finder [21] require more detailed context models: In

order to allow a user to retrieve a personalized selection of surf spots based on the

current conditions, the context model must cover wind and water conditions, as well

as the user’s skills and preferences. In such a complex setting, an analytical tool that

allows the developer to assess which context aspects can cause the biggest turbulences

in the results when they change helps to reduce the complexity of the application by

removing context aspects that have a negligible influence on the outcome. A measure

for the quantification of the users’ perception of the difference between two rankings

would support the reduction of computational complexity of CAIR applications, as

shown in Figure 2: Relevant context parameters can be identified if their change causes

a significant modification of the results for a given query. For this purpose, the same

query is posed repeatedly in different contexts, which differ in certain aspects. If the

corresponding result rankings are modified beyond an application-dependent thresh-

old, they have to be taken into account for the application. Otherwise, they can be

neglected. This process can be automated for large numbers of queries and different

constellations of context parameters to gain a detailed understanding of the influence

of the different aspects of the context. In this way, such a measure would also sup-

port the development of simpler user interfaces for cognitive IR [45] by reducing the

information shown to the user to relevant aspects of the task.

This paper introduces a cognitively plausible Dissimilarity measure for Information

Retrieval Results (DIR) tailored to the specific requirements of this task. The mea-

sure analyzes the individual results in two rankings and compares them for overlap,

focussing on the top results using a weighting mechanism to emphasize differences at
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Figure 1 The spatial context for the query shown in the top two screen shots is very similar,
leading to almost identical results for the search term Pizza. In the bottom screen shot, both
the spatial context and the corresponding results are completely different from the top two.
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Figure 2 Identification of relevant context parameters.

the top ranks of the given result rankings. DIR returns values between 0 and 1, where

0 indicates that two rankings are completely identical, and 1 indicates that they are

completely different, i.e., they share no common entries. Working solely on the results,

the DIR measure can be applied independently of the actual IR method or search

algorithm1. Rankings can be generated, for example, using the probability ranking

principle [38] or novel approaches such as mean-variance analysis [52].

Statistical correlation measures [39] are for the most part not usable for the com-

parison of such result rankings. Beyond the fact that they have not been developed

for inputs of different lengths and with potentially missing values on either side, which

requires special handling [33], these measures also lack a mechanism to mimic the focus

on the top results typically found in human behavior while searching for information

[1]. Moreover, in order to reflect human judgments, it is essential that such a measure

bears cognitively plausible [47] results, i.e., that the outcome it generates correlates

strongly with human judgments.

To make sure that DIR measurements reflect the users’ impression of changes in

such IR result rankings, the measure’s cognitive plausibility has been evaluated in two

human participants tests. The first test was a controlled test with students from the

University of California, Santa Barbara, where the participants were shown triplets

of randomly generated result rankings. One ranking was used as a reference ranking.

The participants’ task was to rate which of the other two rankings differed more from

the reference ranking. The second test was an open, Web-based test where the task

was to rate the difference between two randomly generated rankings. The participants

provided the ratings by positioning a slider between the two extremes indistinguishable

and no commonalities. For both tests, the participants’ judgments were statistically

evaluated and show a strong correlation with the judgments calculated by the DIR

measure.

The remainder of this paper is organized as follows: The next section introduces

related work from the areas of context-aware and cognitive information retrieval as well

1 In fact, the search algorithm may even be unknown, as it is the case for the example shown
in Figure 1.
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as statistical correlation measures. Section 3 introduces the DIR measure, followed by

a description of the settings of the two human participants tests in Section 4. Section 5

evaluates the results of the tests and is followed by conclusions and an outlook on

future work in Section 6.

2 Related Work

This section points to related work from the areas of cognitive and context-aware

information retrieval as well as statistical correlation measures.

2.1 Context, Cognition, and Information Retrieval

Context is an ambiguous concept with numerous definitions and modeling approaches

[4, 46]. Research on context is conducted in areas as different as pervasive computing,

linguistics and sociology2. In computer science related fields, context is most frequently

defined as follows:

Definition 1 Context is any information that can be used to characterize the situa-

tion of an entity. An entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and applications

themselves [7, p.5].

While this definition generally also applies to IR, it does not tell whether a specific

piece of information is really part of the context or not. Hence, we define context in IR

as follows:

Definition 2 An information retrieval task’s context is any information whose change

significantly modifies the task’s outcome.

This definition reduces context to relevant information and motivates the DIR

measure, since it allows to determine whether a piece of information has a significant

effect on the outcome of the information retrieval task or not.

Context has been successfully employed in a number of ways for personalization [22,

21] and to improve retrieval from the Web [9, 24], from email archives [53], from RDF

graphs [31], from Wikipedia [49] as well as for ontology-based alert services [25]. Recent

research has investigated how to reason about distributed contextual knowledge to

enable ambient intelligence [5]. Different approaches based on vector spaces have been

proposed to enable context-aware information retrieval [10, 36, 29]. Context, however, is

only one part that contributes to cognitive IR [45], amongst interactive IR, feedback and

explanations. With similar objectives, the term human-computer information retrieval

(HCIR) was coined for a research field that combines information retrieval with human-

computer interaction to open up new opportunities towards more intuitive, interactive,

and goal-directed IR [41]. Marchionini [27] suggests “that integrating the human and

system interaction is the main design challenge to realizing these opportunities and

that what is required is design that recognizes a kind of syminforosis – people as

organic information processors continuously engaged with information in the emerging

cyberinfrastructure.”

2 For an overview, see the proceedings of the CONTEXT conference series [23].
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Recently, semantic similarity measurement has gained attention as a tool for cog-

nitive IR and HCIR. Originally a field of research in psychology [11], the artificial

intelligence community started investigating the topic from a different perspective, de-

veloping specialized similarity measures [37, 2, 35, 56] and particularly focusing on how

human similarity ratings can be mimicked by algorithmic approaches [37]. The depen-

dence of human similarity judgments on the comparison task’s context is a long-known

phenomenon [28], which is also reflected in formal theories of similarity [43, 40, 15].

While these theories mostly define context by selecting a domain of application (also

referred to as discourse context), recent research aims at a more comprehensive under-

standing of context by analyzing the context-aware similarity measurement process [19]

and categorizing different kinds of context [14]. Kernel functions have been proposed

to learn the appropriate similarity functions for nonlinear relationships among con-

textual information [55]. This paper builds on previous work aimed at a more general

understanding of the effects of context changes on similarity measurements [20].

Previous research has investigated the origins of changes in Web search results. The

PageRank algorithm [34] has been thoroughly analyzed in terms of the mathematical

preconditions that need to be fulfilled in order to generate changes in rankings [30].

However, these observations are only valid for a specific algorithm. Moreover, they are

not linked to the cognitive IR process in any way. By shifting the focus away from the

retrieval method to the actual results, the DIR measure introduced in this paper can

be used independently of the retrieval method.

2.2 Statistical Correlation Measures

Rank correlation is a well known problem with established statistical solutions. How-

ever, none of the standard correlation measures – such as Spearman’s ρ [44], Kendall’s τ

[17] and Pearson’s r [39] – are tailored to the specific requirements of comparing IR

results. Generally speaking, this is due to the fact that those standard correlation

coefficients have been developed to calculate correlation between sets of result pairs

where every individual in one ranking has its corresponding counterpart in the other

ranking. In information retrieval, however, cases where individuals (single result in this

particular case) appear in one ranking, but not in the other, are very common. Thus,

the two rankings to be compared often consist of different numbers of ranks. Finally,

each rank may hold more than one match of equal relevance3. While this concept is

hardly reflected in user interfaces for reasons of simplicity (see [15] for an example), IR

algorithms mostly deal with such shared ranks internally. These ranks contain results

that have been assigned the same relevance rating with respect to the current query.

The DIR measure must be able to cope with all these kinds of input. Furthermore, the

output of statistical correlation measures ranges from −1 for perfect negative correla-

tion to 1 for perfect positive correlation. In the case of IR results, negative correlation

is both hardly to expect and very difficult to explain. Hence, a mapping interval of

[0, 1] is more appropriate for the desired dissimilarity measure, where 0 applies for two

identical result rankings and 1 applies for any pair of rankings that share no common

entries.

From a cognitive perspective, statistical correlation coefficients present a purely

mathematical view on the rankings at hand. While they can be employed to compare

3 We use the term relevance here to refer to the calculated relevance of a hit based on the
applied IR method, not for relevance feedback collected from users.
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result rankings in principle (such as Kendall’s τ in [8]), they do not reflect the human

perspective on the results at hand. In particular, they lack the users’ focus on the

top results that is typical to information retrieval [1]. Rank correlation measures only

compare the rankings for overlap, without any regard of where the differences between

two rankings are – at the top or at the bottom. They therefore lack a mechanism to

stress differences at the top ranks. This property, however, should be in the centre of a

measure that supports cognitive IR. Comparable to the semantic similarity measures

building on similarity research in psychology, the DIR measure needs to reflect the

user’s view on IR results. The cognitive aspect of this research is hence concerned with

the question how to map from two given result rankings to a value between 0 and 1,

so that the order of the resulting values corresponds to human judgments.

3 The DIR Measure

This section introduces the cognitively plausible dissimilarity measure for information

retrieval results (DIR). The characteristics of the measure are discussed using examples

from geographic information retrieval and the measure’s formalization is introduced.

3.1 DIR Characteristics

During the development of tools for context-aware information retrieval, the question

which aspects of the context to include is crucial from the users’ as well as from a com-

putational perspective. Users want the application to account for any relevant context

changes, but processing power can be a bottle neck (especially on mobile devices) and

the collection of context information can be costly when additional sensors are required.

Furthermore, the computing of too much sensor input can slow down the application

and hamper usability. Accordingly, it is important for application designers to be able

to assess the impact of context changes to decide which aspects to include in their

applications, and which to ignore. Finally, being able to measure the impact of context

changes is also interesting from a theoretical perspective, since it enables distinguishing

between noise and intended context [14]: intended contextual information must have

an impact that goes beyond a threshold value δ, otherwise it is considered noise. When

developers use DIR to pick the contextual aspects for a specific application, this selec-

tion should be evaluated using further analysis methods on the implemented system

[48].

The DIR measure is purely based on result rankings. This context impact measure

introduced in [20] in contrast calculates the changes in result relevance values for pairs

of ontological concepts. Such a pair-based measure is of limited use, since it does not

take a relevance value’s interpretation context [14] into account, i.e., its relativeness

regarding other values: A relevance value of 0.8 may result in a top rank, but depending

on the other results, it can also be topped by a large number of other results with

relevance values > 0.8, leading to a lower rank. Moreover, while a single relevance value

(or even all values in a ranking) may change, the order within the ranking may still

remain the same. Accordingly, we propose an approach that looks at result rankings

instead of single relevance values. This ranking-driven approach also adheres to the

cognitive aspect of IR, as the top of a ranking, presenting the best results for a specific

query, is in the users’ focus [1]. For DIR, this means that changes at the top of a ranking
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need to be emphasized by a higher weight, as opposed to changes that affect the lower

ranks. The same applies to concepts that only appear in one of the two rankings at

hand: they change the result rankings and disappear (and pop up, respectively) when

going from one context to another. Both aspects are handled by a weighting mechanism

introduced in Section 3.2.

DIR provides a tool that is applicable independently of the actual retrieval method,

since the measure is based on the outcome of an information retrieval task in different

contexts. Note that the measure is not intended to model – let alone explain – how

human users compare two given rankings, but to reflect how human users quantify the

differences between them. The focus of this research is on cognitive plausibility4 rather

than cognitive adequacy.

Statistical rank correlation measures are not applicable in information retrieval, as

discussed in Section 2.2. They map to the interval [−1, 1], where a value of 1 indicates

identical rankings, −1 indicates perfectly inverse rankings, and 0 indicates no statis-

tical correlation. DIR takes a different approach, mapping to the interval from 0 for

equal rankings to 1 for the extreme case where no result appears in both rankings.

The normalization to the interval [0, 1] allows for a comparison of DIR measures inde-

pendent of the length of the rankings and their properties. DIR does not produce any

negative values since inverse rankings are not only hard to interpret, they are also very

unlikely to occur in the comparison of information retrieval results. Moreover, statis-

tical correlation measure lack the above-mentioned focus on the top results. Consider

the following three rankings:

1. apple apple orange

2. mouse mouse mouse

3. tree tree tree

4. boat boat boat

5. goat ape ape

Both the left and the right ranking differ in only one result from the ranking in the

middle, which leads to the same rank correlation of 0.7 based on Spearman’s ρ for both

pairs of rankings. From a cognitive IR perspective, however, the left two rankings are

much more alike than the right two rankings: while the former two only differ in the

last result, the latter differ in the top result which is in the focus of the IR task.

Methods from information retrieval focus on measuring the quality of the results for

a given query based on a collection of ground truth documents that have been classified

as relevant in advance. The f-measure is a family of different combinations of recall and

precision that is frequently applied for such quality assessments [50]. Other measures

employed for the same purpose include the average normalized modified retrieval rank

(ANMRR) employed in the MPEG-7 video standard [26]. ANMRR measures the re-

trieval quality over all queries for a collection of ground truth images, where retrieval is

based on color and textures. While these measures also produce values between 0 and

1, they compare the contents of a ranking to a non-ranked set of ground truth items.

They are hence not applicable to the comparison of two rankings.

An important aspect in human-computer information retrieval is the presentation

of the results to the user. Flat, list-style visualizations of IR results that do not pro-

vide any information about the actual relevance of the shown results are the current

4 What we refer to as cognitive plausibility in this paper has been defined as relative cognitive
adequacy in [47].
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standard, especially for Web search. Novel visualization techniques, such as tag clouds,

give the user an impression of how good the results are, and how much better result

1 is than result 2, for example. Figure 3 shows two visualizations of a result ranking

from geographic information retrieval: on the left, the results are presented without

any indication of the relevance of the results. The tag cloud on the right indicates

the relevance of the different results and the differences between them by font size:

the better the result, the bigger the font used. Other visualization techniques also fall

into these two categories, such as lists with relevance values or groupings of concepts

into predefined categories [15]. An assumption that suggests itself is that the visualiza-

tion of information about the relevance of results also influences the users’ perception

of changes in result rankings. In order to investigate whether this assumption holds,

we have defined two different versions of the DIR measure: DIRrank is solely based

on the position of the results in a ranking and is applied to list-style visualizations,

whereas DIRrel takes the relevance values of the individual results into account. The

mathematical definitions of the two variants of DIR will be introduced in the following

subsection.

Figure 3 Visualization of the same result ranking as a list without indication of the relevance
values (left) and as a tag cloud, where the relevance determines the font size (right).

3.2 Definition of DIR

DIR is defined based on the comparison of two result rankings. A result ranking R

consists of an ordered set of ranks, where each rank consists of a relevance value

v ∈ [0, 1] and a non-empty set of results k. We assume that the ranks are in descending

order with respect to the relevance values. Each rank is assigned an ascending rank

number n, such that

R =〈{1, v1, (ki, . . . , kj)}, {2, v2, (kl, . . . , kp)}, . . . , {n, vn, (kq, . . . , kr)}〉,
where v1 > v2 > · · · > vn.

(1)

DIR is a symmetric function based on the shift that every concept k undergoes

when a query is posed in two different contexts. This shift is calculated for every result

that is part of either of the two rankings (or both). Based on the position in either

ranking, individual weights are assigned to all shift values. The sum of all weighted

shifts is then divided by the maximum possible dissimilarity md for normalization. By

slight abuse of notation, we denote the appearance of a result k in a ranking M as

k ∈M . For a pair of result rankings M , N , we define DIR as

DIR(M,N) =

∑
shift(k) ∗ weight(k)

md(M,N)
, k ∈ {N ∪M}. (2)
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In the following, we define the shift, weight, and md functions for the two variants

DIRrank and DIRrel .

The shift function. The basic formalization of DIR shown in eq. 2 can be filled with

different functions depending on whether relevance values should be taken into account

or not. The shift function for a purely rank-based DIR is the difference in rank number

between the two rankings. A special case occurs when the result appears in only one of

the two rankings: in this case, the shift is the distance between its current position and

the position “behind” the last rank of the longer ranking. We hence treat the result as

if it just drops out of the longer ranking5. Let |M | be the number of ranks (not results)

in M and |N | the number of ranks in N . Assuming that M is the longer (or equal)

ranking, i.e. |M | ≥ |N |, we define the rank-based shift as

shiftrank (k) =


|rankk(M)− rankk(N)| if k ∈M ∧ k ∈ N ,

|M | − rankk(M) + 1 if k /∈ N ,

|M | − rankk(N) + 1 if k /∈M .

(3)

The relevance-based shift function takes the same approach, though based on rel-

evance values instead of ranks. It takes the relevance differences into account. The

special case where a result appears in only one of the two rankings does not require

special handling: results that do not appear in one ranking have a relevance value v of

0, so that the following equation covers all possible cases:

shiftrel(k) = |vk(M)− vk(N)| (4)

The weighting function. The purpose of the weighting function is to stress shifts that

affect the top of either ranking. DIR’s weighting function, which is used both for

DIRrank and DIRrel , employs the rank number to determine the weight: if a result

appears in both rankings, the rank number which is closer to the top of the ranking is

used and subtracted from the number of ranks of the longer of the two rankings. This

puts the weight in relation to the maximum possible weight for the given configuration

(i.e., the weight for the results at rank 1 in the longer ranking). Accordingly, one could

think of the weights as inverse rank numbers, i.e. in a ranking M , rank no. 1 is weighted

|M |, rank no. 2 is weighted |M | − 1, and so forth. The last rank is weighted 1. If the

result appears in only one ranking, the total number of ranks of the longer ranking

is used as the weight. This stresses results that pop up or disappear during a context

change, as explained in Section 3.1. For |M | ≥ |N |, the weighting function is defined

as

weight(k) =

{
1 + max (|M | − rankk(M), |M | − rankk(N)) if k ∈M ∧ k ∈ N ,

|M | if k /∈M ∨ k /∈ N .
(5)

5 Shifting a result “behind” its own ranking’s last rank does not work here. For rankings
with a big difference in length, this can produce situations where the shift of a result from
the top of a short ranking to the end of a long ranking would exceed the shiftrank value for
dropping out, which is supposed to be the maximum possible shift.
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Determining the maximum dissimilarity. According to Equation 2, the sum of all sin-

gle impact values,
∑

shift(k) ∗ weight(k), is then divided by the maximum possible

dissimilarity value for normalization. The maximum dissimilarity md is reached when

no result appears in both rankings. To calculate this value, we assume that this is

the case for the given constellation of rankings with their specific relevance values and

corresponding ranks. This maximum dissimilarity value depends on the shift function,

therefore, the calculation of md is different for the rank-based and the relevance-based

versions of DIR. For the rank-based version, this means that every concept is shifted

out of the longer ranking and weighted according to the number of ranks in the longer

ranking. Correspondingly, just like the shift function, the maximum possible impact

depends on the lengths of the two rankings, and on the number of concepts at every

rank. Let k ∈ rm be the concepts at rank m, |k ∈ rm| the number of concepts at rank

m, and given |M | ≥ |N |, the maximum impact for the rank-based DIR is

mdrank(M,N) = |M |∗(

|M |∑
m=1

(|M |+1−m)∗|k ∈ rm|+
|N |∑
n=1

(|M |+1−n)∗|k ∈ rn|). (6)

For the relevance-based DIR, this straight-forward calculation based on rank num-

bers is not possible. Instead, the relevance value at a given rank must be taken into

account. Accordingly, mdrel additionally depends on the exact relevance values asso-

ciated with the ranks. Let vm be the relevance value at rank m, the maximum impact

for the relevance-based DIR is

mdrel(M,N) = |M | ∗ (

|M |∑
m=1

vm ∗ |k ∈ rm|+
|N |∑
n=1

vn ∗ |k ∈ rn|). (7)

Both versions of md provide the maximum possible dissimilarity value for a given

configuration of two relevance rankings. It is thus made sure that whenever two com-

pletely different result rankings are passed to DIR, it will return the value 1.

4 Human Participants Tests

The intention behind DIR is to represent how human users perceive changes in IR

result rankings. This section describes two human participants tests that were carried

out in order to evaluate the cognitive plausibility of the DIR measure.

4.1 Test One: Judgment by Order

The first human participants test (referred to as test one in the following) was a Web-

based test designed around the task to compare two result sets to a third reference set

(see Figure 4), where the participants had to rate which of the bottom two sets differs

more from the reference set at the top. Three options were given to choose from: one

could either select the left or right result set to be more different from the reference set,

or alternatively choose “cannot decide”. The first test hence focussed on the order of

the different DIR values and its correlation with the order of the participant judgments

[42, 16].
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Though designed for completion on the Web, the test was not publicly accessible6.

Login information was only provided for registered participants, who were shown an

introductory page with an example to clarify the task. In some cases, the test was

completed in a university lab; however, no additional instructions were provided. It was

thus made sure that every participant receives the same information. Moreover, written

instructions have been shown to be preferred by participants over spoken instructions

[12].

Figure 4 Screen shot of single comparison tasks in test one for the relevance-based (left) and
rank-based (right) DIR variant.

Both visualization techniques were tested and every participant was shown all tasks

using only one of them. The result rankings contained existing English words. For every

participant, ten comparison tasks were randomly generated so that the ten difference

values (diff ) were equally distributed between 0 and 1: for every randomly generated

triplet, DIRL =DIR(LeftSet, ReferenceSet) and DIRR =DIR(RightSet, ReferenceSet)

were calculated, so that diff = |DIRL−DIRR|. The diff values for the 10 tests shown

to every participant were distributed randomly between 0 and 1. The hypothesis to

test was that the bigger the diff value, the easier it should be for a participant to

decide, reflected in higher numbers of judgments in line with DIR. Moreover, based on

the logged time required for every task, it was assumed that tasks with a bigger diff

value are solved in less time than those with smaller diff values, i.e., that there is a

negative correlation between the time required per task and the diff value for the task.

6 After the study, the first human participants test has been made publicly available for
review at http://v-simcat.uni-muenster.de:8080/UCSB-Test/.

http://v-simcat.uni-muenster.de:8080/UCSB-Test/
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4.2 Test Two: Judgment by Numbers

The second test was also designed as a Web-based test7, however, test two was an

open test where everyone could participate. As in test one, participants were shown

randomly generated result sets visualized either as tag clouds or lists (see Figure 5).

The objective of this test was to investigate whether the DIR measure does not only

correlate with participant judgments in terms of order, but also in terms of the actual

values. The participants’ task consisted in comparing pairs of result sets and answering

the question “how much does the left result set differ from the one on the right in

your opinion?”. The questions were to be answered by moving a slider ranging from

“indistinguishable” to “no commonalities”. The position of the slider was internally

mapped to values in the interval [0, 1].

Figure 5 Screen shots of single comparison tasks in test one for the relevance-based (top)
and the rank-based (bottom) DIR variants.

The test was available in English and German to increase the number of potential

participants. It was explained with an example and some background information on

an introductory Web page. The participants were specifically advised that there are no

right or wrong answers in the test to make sure that they adjust the slider according

to their personal opinion. In addition to the slider position, the time every participant

spent on every pair of result rankings until he or she committed the judgment was

logged. Each ranking of test data was stored along with the computer’s IP address to

make sure that every participant takes the test only once.

7 The test is available online at http://v-simcat.uni-muenster.de:8080/OnlineCIMTest/
UserTest?language=en.

http://v-simcat.uni-muenster.de:8080/OnlineCIMTest/UserTest?language=en
http://v-simcat.uni-muenster.de:8080/OnlineCIMTest/UserTest?language=en
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As in test one, every participant was presented with all comparison tasks using the

same visualization technique – either list-based or as a tag cloud – to avoid confusion.

The result rankings were limited to seven entries on either side to prevent cognitive

overload. As opposed to test one, the results in the rankings consisted of made-up

words, so that the participants could not perform any undesirable reasoning on the

result rankings, such as “result set A contains ‘tree’ and result set B contains ‘apple’,

therefore. . . ”. Moreover, these made up words guaranteed that the German and the

English speaking participants could be shown the same test data. The entries were also

color-coded to facilitate recognition of identical entries in the two result sets. Entries

appearing in both rankings were displayed in the same color, whereas entries shown

only either left or right were displayed in black.

The seven pairs of result sets were arranged according to predefined ranges using

DIR. Every participant was shown two extreme cases, one with completely identi-

cal rankings (DIR = 0) and one with completely different rankings (no common en-

tries, DIR = 1). These two cases were included to make sure that every participant

had read and understood the instructions. The remaining five were generated so that

the corresponding DIR values were within five equal intervals between 0 and 1 (i.e.,

[0.0, 0.2[, [0.2, 0.4[ . . . [0.8, 1.0]). The seven tests were randomly generated for every new

participant and presented in random order.

5 Evaluation and Comparison

This section analyzes and compares the results of the two human participants tests

introduced in Section 4. The distinction between the two different visualization types

is discussed.

5.1 Test One: Judgment by Order

The participants in test one consisted of a group of 52 undergraduate students at the

University of California, Santa Barbara, who received credit points for participation.

The participants were between age 17 and 27, with a mean age of 18.5. The group

consisted of 37 female and 14 male8 participants majoring in different fields, most of

them still undecided about their major.

The evaluation of test one was carried out on the complete collection of all 52

participant datasets. Figure 6 gives an overview of the collected data and shows that

the cases where the participant judgements coincide with the calculated diff value

based on DIR form the large majority. Nonetheless, some participants largely disagree

with the calculated values, such as participant 02 in the list visualization, or participant

05 in the tagcloud visualization. Out of the 520 comparison tasks completed by the

participants, 341 (∼ 66%) were judged in compliance with DIR, 111 (∼ 21%) were

judged inconsistent with DIR, and in 68 cases (∼ 13%), the participants could not

decide.

Figure 7 shows the distribution of ‘correctly’ (i.e., in line with DIR), ‘falsely’ (con-

tradicting DIR) and undecided tasks per user. The right histogram shows that only 5

participants (∼ 10%) judged more than 4 tasks contradicting DIR; for comparison, 22

8 One participant did not provide any personal information.
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Figure 6 Results for the 52 participants in test one. Every row in the two columns represents
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The circles’ positions in the row reflect the respective diff values.
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participants (∼ 42%) judged less than 2 tasks contradicting DIR. The left histogram

shows that 37 participants (∼ 71%) judged more than half of the tasks according to

DIR. These numbers indicate a strong agreement of the participants with the DIR

measure, which is supported by the results of a test for correlation. For this test, all

520 tasks completed by the participants were sorted with ascending diff values and

then split into 20 groups of 26 tasks each. For each group, the mean diff value and

the number of participant judgments that were in line with DIR were computed. Since

the resulting ranks are not equidistant, the correlation between mean diff value and

number of ‘correctly’ solved tasks was tested using Kendall’s τ . The test yields a pos-

itive correlation of τ = 0.602. The result is significant at the 1% level (p= 0.000029).

Hence, the hypothesis that higher differences between the DIR values lead to a higher

recognition rate among the participants cannot be falsified (i.e., we have to reject the

null hypothesis of no correlation).
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Figure 7 Histograms of the number of tasks solved in line with DIR (left), undecided tasks
(middle) and tasks solved contradicting DIR (right) per participant. In the left histogram, for
example, the rightmost bar shows that 3 participants had solved all 10 tasks in line with DIR.

The second hypothesis to test was that a higher diff value in a specific task also

allows the participants to solve it faster. Looking for a negative linear correlation

between the respective diff values and logged completion times, this hypothesis was

tested using Pearson’s product-moment correlation on the 520 single tasks. The test

yields a slight negative correlation of ρ = −0.11, which is significant at the 5% level

(p= 0.0123). Accordingly, the diff values have a comparably small (yet statistically

significant) effect on the time required to solve a task.

The development of the two different versions of DIR followed the assumption that

user judgements depend on whether the result visualization includes hints on inter-rank

distances or not. If this is the case, the correct choice between DIRrel and DIRrank
with respect to the presentation of the results should increase the correlation between

user judgements and the DIR calculations. To test this hypothesis, the two correlation

tests were repeated with a dataset where the diff values for all tasks carried out by the

participants were calculated using DIRrank . The DIR values were thus calculated only

based on the order of the results, independent of whether the participants were shown

tag clouds containing information on inter-rank distance. In this setting, Kendall’s τ

yields a positive correlation of τ = 0.613, significant at the 1% level (p= 0.00020). The

correlation is thus even slightly stronger when DIR is calculated solely based on ranks,

which suggests that DIRrank is a plausible measure for perceived changes in result sets,
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independent of result visualization. Accordingly, inter-rank distance seems to play a

secondary role for users, who seem to focus on the order of the results. The correlation

between diff values and completion times remains largely unchanged by the limitation

to DIRrank .

5.2 Test Two: Judgment by Numbers

The 81 participants who took the test were anonymous volunteers recruited by dis-

tributing an announcement on several mailing lists. As no compensation was granted

for participation, the test was intentionally kept very short to avoid participants from

getting bored and breaking off in the middle of the test. No personal data such as age,

sex, or occupation were collected, as the reliability of such data in an open, Web-based

human participants test is per se very limited. It is very likely that the majority are

adults with a college education background, given that the call was distributed on

several geography, geoinformatics and computer science mailing lists.

Out of the 81 participants who took test two, 42 were shown the rank-based test and

39 were shown the relevance-based test. Only tests where the participants had correctly

understood the instructions were taken into account for the statistical analysis: if one

of the two extreme cases contained in each test (DIR = 0 or DIR = 1) were judged

more than 0.25 “off” (user judgment > 0.25 and < 0.75, respectively), these tests were

not used any further. After this filtering, 31 rank-based and 25 relevance-based tests

were used for evaluation. For this collection of 56 tests, the participants spent a mean

time of 4 min, 16 sec on the completion (including instructions) and a mean time of 2

min, 14 sec on reading the instructions. It it thus safe to assume that the tests used for

evaluation were completed thoroughly and that the according participants had read

the instructions and understood the task.

Figure 8 shows bubble plots of DIR values against the values selected by the par-

ticipants using the slider. The circle area reflects the time spent on the respective task.

The distribution of the bubbles, each representing the result of one task completed by

a participant, already gives an impression of the high variance of the user judgments

compared to the calculated DIR values (see also Figure 9). Nonetheless, the regression

line in Figure 8 shows that the calculated DIR values generally follow the same trend

as the participant values.

The correlation between the user judgments and computed DIR values for test

two can be calculated directly on the values entered by the users; it is not necessary

to group the tasks, as in the evaluation of test one. When both visualization types

are analyzed with the respective DIR variant, Pearson’s product-moment correlation

yields a positive correlation of 0.805, significant at the 1% level. In this constellation,

the logged completion time correlates slightly with the respective DIR values at 0.106,

significant at the 5% level. Interestingly, the users thus needed slightly longer, the more

different (according to DIR) the two shown rankings were.

For test two, we also analyzed the effect of the choice of DIR method on the

correlation. If all results are recalculated using only DIRrank , the correlation between

user judgments and DIR values decreases slightly to 0.803 (significant at the 1% level).

The correlation between DIR values and completion times does not change notably

either, dropping to 0.102.
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Figure 8 Bubble plots with regression lines of the calculated DIR values against the partic-
ipant judgments for list visualization (left, with DIRrank ) and tag cloud visualization (right,
with DIRrel ) in test two. The bubble size indicates the logged completion time for the respec-
tive task.
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Figure 9 Box plots of the two variants of test two, showing the deviation of the participant
judgments from the computed DIR values. The two box plots on the left show both visualization
types with their corresponding DIR variants, the right box plot shows all 392 tasks solved by
the participants compared to DIRrank . The boxes are slightly shifted to the positive side,
which shows that the participants tend to rate the dissimilarity slightly higher than DIR.

5.3 Discussion

The most striking outcome of the evaluation is the fact that the purely rank-based vari-

ant of DIR correlates equally strong with the participant judgments as the relevance-

based DIR in both tests. Apparently, users do not take the relevance values of the

results into account when they compare two sets. While the information that, for ex-



19

ample, result 1 is twice as good as result 2, is certainly valuable from an objective point

of view, users do not seem to distinguish this from a case where result 1 is only slightly

better than result 2. The outcome of the two human participants tests thus confirms

the approach taken by all popular Web search engines in presenting their results to

the users as flat lists. At the same time, it renders DIRrel superflous, at least for the

cases studied in this research. This may change when applying the measure to real IR

use cases, where users typically only skim through the results and do not take such a

close look as the participants in these two studies.

The evaluation of both human participants tests revealed a strong correlation be-

tween the calculated DIR values and the respective participant judgments. Completion

time, however, does not seem to be influenced by how different (according to DIR) the

presented result sets are. A slight negative correlation could be observed in test one,

showing that the more different two pairs of result sets, the faster the tasks were solved.

The evaluation of test two did not support this finding, though. Since in both cases,

the correlation was very weak, we have to assume that there is no connection between

DIR and processing times – at least at the level of number of results presented in this

study. A stronger correlation may turn out with higher numbers of results presented

to the participants. Moreover, this outcome may have been influenced by the setting

of the study, where all participants looked thoroughly at the tasks before submitting

their judgments; to further investigate this correlation, observing users in solving actual

information retrieval tasks seems to be a promising approach.

6 Conclusions and Future Work

For the development of context-adaptive applications for information retrieval, tools for

the analysis of the impacts of context changes are indispensable. In this paper, we have

introduced DIR, a cognitively plausible dissimilarity measure for information retrieval

result sets. Two different versions of DIR were introduced, depending on the visualiza-

tion of the results. Both variants – one for purely rank-based visualizations (DIRrank )

and one for visualizations containing information on result relevance (DIRrel ) – were

tested in two human participants tests. The evaluation of the tests showed that there

is a strong correlation between the results calculated by the DIR measure and the

participant judgments, proving the cognitive plausibility of the measure. In both cases,

DIRrel was outperformed by DIRrank in terms of correlation. Besides the DIR mea-

sure, the major contribution of this paper is hence to show that users seem to focus on

the order of the results and largely ignore the relevance information when comparing

result sets. Moreover, the evaluation did not show any evidence of a correlation be-

tween the difference of two result sets and the time required to compare them. In the

settings of the studies, i.e., with a comparably low number of results, it did thus not

matter for the completion time whether the results at hand were very much alike or

very different. Previous research indicates, however, that the small number of results

presented to the participants were still within a range that can easily be processed [32].

It thus remains to be shown whether this finding also holds when the participants are

shown larger numbers of results.

Future research should hence focus on testing these findings in studies where users

are solving actual information retrieval tasks. In the human participants tests discussed

in this paper, the result sets presented to the users were reduced to small numbers of

results. Moreover, the participants’ task was to compare the different result sets –
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in a more realistic scenario, users would have to solve an actual IR task with larger

numbers of results. Conclusions on their comparison judgments would then have to be

drawn from their interaction with the system. Potential testing scenarios are especially

attractive in controlled environments with directs access to the users. Such conditions

are given for information systems in museums or libraries, for example, where visitors

search the respective databases and catalogues. This setup would also allow for in-

terviews with the users, either during or after use of the information system, to find

out about their strategies for comparing result rankings. Concerning mobile applica-

tions, smartphone implementations of tools such as a surf spot finder [21] or a climbing

route planner [54] are attractive for user studies because of their sensitivity to context

changes. Since the evaluation of mobile applications can be challenging, participants

could be ask to “think aloud” during their interaction with the system. The built-in

microphone could be used to record the users’ utterances. Besides these studies which

analyse the users’ interaction with IR systems during actual use, one could also imag-

ine eye tracking studies to derive from the users’ eye movements how they compare

rankings. In any case, such studies should also broaden the range of participants in

terms of background, education and experience in using Web search engines. For both

tests presented in this paper, the participants can be assumed to be experienced Web

users who are familiar with IR systems, at least in the form of Web search engines. Test

one was even completed by a group of participants consisting only of digital natives

who have grown up with the Web. It would thus be interesting whether their results

can be confirmed for less experienced users.

The DIR measure works solely on the result sets, independent of the applied IR

method. As such, it is also applicable to analyze the effects of changes to knowledge

bases or search engine indexes. In peer-to-peer based search engines [51], DIR can

investigate how nodes joining or leaving the network affect search result. For context-

aware information retrieval, DIR allows us to quantify the changes in the result sets

during context changes. The qualitative aspect of these changes in the results can simply

be identified by looking at how the single results moved up or down in the ranking,

and by checking which of them disappeared or turned up. The final missing piece in

fully analyzing the influence of context changes on result sets is thus the link between

the qualitative changes in context and the qualitative changes in the results. The goal

of such an analysis is to be able to predict the changes in the results that follow from

changes in specific aspects of the context. Whether this is possible independently of

the applied IR method remains an open research question.
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