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Abstract. As location-aware applications and location-based services
continue to increase in popularity, data sources describing a range of
dynamic processes occurring in near real-time over multiple spatial and
temporal scales are becoming the norm. At the same time, existing frame-
works useful for understanding these dynamic spatio-temporal data, such
as time geography, are unable to scale to the high volume, velocity, and
variety of these emerging data sources. In this paper, we introduce a com-
putational framework that turns time geography into a scalable analysis
tool that can handle large and rapidly changing datasets. The Hierar-
chical Prism Tree (HPT) is a dynamic data structure for fast queries on
spatio-temporal objects based on time geographic principles and theories,
which takes advantage of recent advances in moving object databases and
computer graphics. We demonstrate the utility of our proposed HPT us-
ing two common time geography tasks (finding similar trajectories and
mapping potential space-time interactions), taking advantage of open
data on space-time vehicle emissions from the EnviroCar platform.

Keywords: time geography, dynamic indexing, spatio-temporal queries,
scalability

1 Introduction

Decision making in the corporate, private, and public spheres is increasingly
based on spatio-temporal information. These information sources include real-
time traffic counts, location-based social-media interactions, environmental sen-
sor networks, as well as space-time trajectories of humans, animals, and vehicles.
At the same time, modern advances in information and communication tech-
nology have converged with popular culture (e.g., geo-tagging, location-based
services, crowd-sourcing, etc.) to create an environment that is overflowing with
new forms of spatial data [1,2]. Many of these emerging data sources contain
details about movements and flows of individuals, objects, or information over
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geographic space, and are part of a growing list of dynamic spatio-temporal data
sources.

Existing frameworks for understanding dynamic processes are available, in-
cluding the rich conceptual and theoretical frameworks of time geography [3,4].
Hägerstrand’s time geography was originally developed to understand how hu-
man migration activities are constrained at the individual level, and provides an
ideal framework within which to explore modern spatio-temporal data sources.
Indeed, there has been renewed interest in time geography concepts for geospa-
tial research [5,6], including for location-based services [7,8], accessibility [9,10],
trip planning [11,12], and health [13]. Despite this increasing interest, issues of
scalability and applicability to emerging data sources are limiting time geogra-
phy’s use in data-intensive research.

While time-geography is useful for thinking about many types of spatio-
temporal movements, much of the existing literature focuses on a limited num-
ber of individuals or features, and does not generally scale to larger problems. In
this paper, we present a computational framework for time geographic analysis
that aims to preserve the underpinnings of time geography (and in particular,
Miller’s [3] time geographic measurement theory), while at the same time in-
creasing the scalability and applicability of the framework to meet the needs of
a data-intensive research agenda.

In the following section (Sec. 2), a brief background on time geography is
presented, followed by a presentation of dynamic (spatio-temporal) data struc-
tures and bounding volume hierarchies (Sec. 3) as a potential means of scaling
time geographic concepts. Building on these ideas, a framework (Sec. 4) for the
development of time geographic data structures which takes advantage of re-
cent advances in moving object databases and computer graphics research is
introduced. Following this (Sec. 5), two examples of this framework applied to
common time geographic analysis tasks are presented, using space-time data on
vehicle emissions from the EnviroCar platform [14]. We conclude (Sec. 6) with
a discussion of the proposed framework and directions for future research.

2 Background

The basic concepts of time geography are the space-time path, describing changes
in an object’s location with time, and the space-time prism, describing an object’s
travel potential. This potential is constrained by the speed at which the object
can travel (vmax), as well as locations at which the object must be present (e.g.,
home and work when the object in question is a person). In general, a space-time
path (see Fig. 1a) consists of a sequence of control points and a corresponding
sequence of path segments connecting these points. In this definition, control
points are observed or measured locations in space and time, and segments
connect temporally adjacent control points. A space-time prism (see Fig. 1b)
may exist between any pair of temporally adjacent control points, creating a
time interval during which unrecorded (or future) travel may occur. An object
may thus occupy locations in space other than the straight-line segment between
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two adjacent control points. The outline of the prism represents the limits of the
locations that can be visited, as defined by the known space-time control points,
and the object’s maximum velocity, vmax, which defines the prism’s diameter.
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Fig. 1. Features of Hägerstrand’s time-geography. Concepts include (a) space-time
paths, bundling and stations (cylinder), as well as (b) space-time prisms, and accom-
panying start and end points, future and past cones (semi-transparent), and potential
path areas (projected onto base).

The time-geographic concepts above have been formalized by Miller [3], who
introduces a rigorous measurement theory based on three key assumptions: (1)
the metric space satisfies the notions of identity, non-negativity, and triangular
inequality about distance, (2) data are recorded at specific points in time, and
(3) analysts have perfect information about the system (although relaxations of
this assumption have been explored to some degree [15,3]). Building on these
relatively simple assumptions, Miller has developed mathematical (and geomet-
rical) definitions for space-time paths, prisms, stations, bundles (convergence of
two or more paths for some shared activity over some given length of time), and
intersections (two or more features sharing the same location(s) in space and
time). Miller also provides strict conditions within which space-time paths are
bundled and where intersections may occur between paths and prisms.

Research areas that typically employ time geography as an analysis tool
deal with different aspects of mobility (e.g., location-based services, accessibil-
ity, trip planning, health). The proliferation of mobile devices, sensor networks,
and new developments such as the Internet of Things create an abundance of
new data sources for these domains, which have traditionally dealt with small,
easily tractable, and carefully selected samples. In the following sections, we will
introduce a computational framework that turns time geography into a scalable
analysis tool that can handle large and rapidly changing datasets, allowing the



4 Carson Farmer and Carsten Keßler

aforementioned domains to leverage these new data sources. We will argue that
dynamic spatial indexes are not sufficient in this context, and that dynamically
updated bounding volume hierarchies present a viable solution.

3 Dynamic Spatial Indexes

A wide range of data structures have been proposed for efficient queries on spa-
tial and spatio-temporal data [16], including indexing strategies geared towards
location-based services [17], real-time data [18], or more general spatio-temporal
data [19,20]. However, for objects that may move in space and time, these indexes
have to be continually updated, which can limit their utility in many cases. In
order to address this issue, a number of dynamic indexing algorithms [21,22], in-
cluding dynamic spatial indexes [23,24,25] have been developed, many of which
are designed specifically for keeping track of moving objects [26,27,28]. These
efforts have lead to a number of useful data structures and indexing schemes
for static and dynamic spatial data, with a particular focus on 2D geometries
(although some innovative exceptions have been proposed [29]). Because time
geography embeds objects in 3D space-time, it is prudent (and useful) to query
and perform analysis on objects in this space directly. For example, while con-
ceptually similar to 2D space plus 1D time, a 3D index allows us to query and
explore the joint space-time in a more efficient way (rather than querying space
and then time or vice versa) and allows us to work directly with 3D volumes,
rather than 2D time slices. For this, one can turn to the computer graphics lit-
erature, where data models for static and continuously moving 3D objects are
required to speed up the rendering process [30,31].

3.1 Bounding Volume Hierarchies

Many 3D spatial indexing (or space partitioning) algorithms, such as R-trees, oc-
trees, and kd-trees, slice 3D space with a flat 3D plane [32] to create sub-volumes.
This is efficient to search, but presents a problem when objects overlap the split
boundary. In dynamic applications of octrees or kd-trees [21], [33], objects may
be placed into all sub-volumes they touch. This requires extra overhead when
working with moving objects, and extra tests when traversing the space to han-
dle duplicate occurrences. As such, while kd-trees have excellent performance for
static geometries [34], when it comes to dynamic settings with multiple moving
objects, a different approach is required3.

Instead of selecting a split-plane to divide volumes, a bounding volume hier-
archy (BVH) tree of arbitrary enclosing volumes (e.g., bounding boxes, capsules,
cylinders, spheres, etc.) can be used [36], [30] (Fig. 3). Here, the sub-volumes
of a node don’t have a particular split plane dividing them, and instead, the
objects are divided to minimize some feature of the sub-volumes (generally the
surface-area or volume, estimated by a heuristic). This approach has been shown

3 Although some parallel versions of kd-trees [35] do show promise.
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to display superior construction performance over kd-trees [34], and because ob-
jects need not be split across sub-volumes, it also allows for dynamic object
updates, insertions, and deletions [37], which facilitate dynamic BVH imple-
mentations. Furthermore, because the tree contains arbitrary enclosing volumes
(i.e., there is no clear split plane), sub-volumes are allowed to overlap. Indeed,
the ability for sub-volumes to overlap is one of the main reasons that BVHs can
handle efficient dynamic updates. When objects only move a short distance, the
only adjustment required is a simple adjustment of the bounds of their enclosing
volume(s). Even if the volumes overlap other volumes, the BVH will still function
correctly (although at slightly reduced efficiency). Furthermore, the arbitrary en-
closing volumes provide a significant level of flexibility, even facilitating nested
(or multi-scale) BVHs (i.e., a BVH of BVHs is possible).

a

b c
Refit Rotate

a

b

c

Fig. 2. Tree rotations are local restructuring operations that modify subtrees of a
binary tree by swapping direct child and grandchild nodes [38]. In this case, as triangle
(c) moves, the bounding volume expands, but rather than splitting the modified node
into separate nodes containing triangles (b) and (c), tree rotations allow the BVH to
identify and perform helpful merges and splits, such as merging (a) and (c) into a new
leaf node.

When there is significant overlap, the BVH tree generally needs to be re-
structured [39]. To perform this re-structuring efficiently, [38] have developed
a method based on localized updates to the BVH structure via tree-‘rotations’
which has proven extremely useful [37], [40]. Combining these tree-rotations
with the ability to have overlapping volumes, handling moving objects in a BVH
works in two ways: (1) if the movement is minimal, the BVH can be quickly and
conservatively expanded to handle the new location (at the cost of efficiency), or
(2) if movement is significant (i.e., overlaps are large), tree-rotations to optimize
the BVH structure can be performed (Fig. 2).
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4 Hierarchical Prism Trees

As mentioned previously, one of the key features of time geography is the space-
time prism, a 3D geometric construct that defines potential space-time acces-
sibility. Using a BVH tree, prism intersection tests can now be performed on
the actual prism volume, rather than at discrete time slices, which is common
practice in GIS-based time geography e.g. [41,42]. Algorithms for intersection
detection of cones and bounding boxes are readily available, many of which are
well-tested and efficient4. For most time geography analysis, simple bounding box
intersection tests provide a quick test of intersection, with more computational
tests (cone/cone and cone/cylinder) reserved for intersecting prisms (though in
most cases, only a 2D projection of prism intersections is required, not the actual
intersection of the prisms).

The above BVH techniques can be implemented in a time geographic frame-
work, where the 3D space represents location on the x and y axes, and time on
the t (or z) axis (see Fig. 3). The concepts of cones and prisms from time geog-
raphy mean that approximate location queries can be handled using relatively
simple collision tests and predictive location queries [43] can take advantage of
the uncertain nature of cones/prisms. While these types of queries require a pri-
ori information about an object’s behavior (vmax), when the prism shape and
size are unknown (or likely to be variable), existing methods are available that
can be used to estimate features of the space-time prism/cone [42], [44,45]. Fur-
thermore, because the BVH only requires an estimate of the bounding volume
(i.e., not the geometry of the object itself) to facilitate efficient updates and
queries, more fine-grained analyses and queries are able to lazily [46] evaluate an
object’s position and shape, leading to further efficiency gains. Now, space-time
intersections, searches, and analyses can be efficiently implemented for a large
number of continually moving space-time objects, with minimal computational
overhead, within a hierarchical tree of space-time prisms, or a Hierarchical Prism
Tree (HPT).

When an even larger number of objects are being tracked, a nested approach
to structuring space-time paths and prisms may be required. For instance, rather
than tracking each individual space-time prism in a HPT, it may be preferable
to track the overall space-time path instead; using the HPT to handle updates
of the overall trajectory. When finer-grained details are needed (i.e., to compute
joint potential path areas), a nested HPT of space-time prisms can be lazily
generated and queried.

5 Examples

In this section, we present two common time geographic analysis tasks which take
good advantage of the proposed HPT framework. The first (Sec. 5.2), based on
finding similar space-time movement patterns, is somewhat simplistic given the
nature of the binary tree solution proposed here. The second (Sec. 5.3), based

4 See for example, http://www.realtimerendering.com/intersections.html

http://www.realtimerendering.com/intersections.html
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(a) HPT with space-time paths
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Fig. 3. Dynamic HPT techniques map ideally onto a time geography framework. A
HPT of space-time paths (a) can be dynamically built and efficiently queried via time-
slice, nearest-neighbor, or bounding box queries, and results can be filtered (b) using
more complex intersection tests at the level of space-time prisms (in this case, the HPT
in (b) is a subset of the largest space-time path traveling west-to-east in (a)). Tree leafs
and nodes are denoted by semi-transparent and empty boxes respectively, with nested
trees (a) and space-time prisms (b) as solid objects.

on computing joint potential path areas [44,45] for multiple space-time paths, is
more complex, and requires multiple levels of queries and calculations. For these
examples, we take advantage of vehicle trajectories from the EnviroCar5 project’s
RESTful API. The (preliminary) Python code implementing the examples dis-
cussed in this section is available at https://github.com/carsonfarmer/hypt.

5.1 EnviroCar

EnviroCar is a community-based data collection platform for gathering vehicle-
borne sensor data and producing environmental information [14]. EnviroCar uses
standard Bluetooth OBD-II adapters6, which are connected to a vehicle via the
standard OBD connection that allows it to read parameters such as speed or rev-
olutions per minute. From there, a smartphone records the data at regular time
intervals, augmented with GPS information from the EnviroCar smartphone
app. The EnviroCar app automatically calculates further information such as
fuel consumption and CO2 emissions, which can then be uploaded to the Enviro-
Car platform server for subsequent analysis and sharing with the wider research
and citizen-science communities.

EnviroCar trajectories provide an ideal test-bed for exploring some of the
concepts presented in this paper. For each control point in a series of EnviroCar

5 https://www.envirocar.org
6 http://www.obdii.com/background.html

https://github.com/carsonfarmer/hypt
https://www.envirocar.org
http://www.obdii.com/background.html
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Fig. 4. A random selection of 43 EnviroCar space-time paths, encorporating ∼4050
space-time prisms (see Fig. 3b). Note that times have been scaled from 0 to ∼20
minutes for demonstration purposes. Basemap data, imagery, and map information
provided by MapQuest, OpenStreetMap and contributors, ODbL. Trajectories data
provided by EnviroCar [14], ODbL.

trajectories, we have several measures that can be used to determine the shape
and size of its corresponding space-time prism. For instance, the recorded speed
at each point in the trajectory can be used to determine the value of vmax (max-
imum velocity), which is of relevance when computing dynamic potential path
areas or other metrics that are dependent on the space-time prism. Additional
variables such as CO2, can be stored along with the control point and associated
prism to answer queries such as “how much CO2 was produced by vehicles in
this area over this time period?” or “which locations (joint potential path areas)
have the highest number of CO2 measurements in this region?”.

5.2 Similarity Analysis

Similarity analysis across space-time paths is a common task in time geography
research. The ability to identify similar space-time paths can aide researchers
in locating space-time stations and bundling, improve visualization though path
clustering (grouping similar paths), and path aggregation (forming composite
paths) [41], as well as identifying similar geospatial ‘lifelines’ for discovering the
environmental factors responsible for hot-spots and clusters of certain diseases
[47]. Additionally, a common task in animal movement analysis is to identify
areas of (potential) spatio-temporal overlap (or separation) between different
animal species [48] or individual animals of the same species [45] (see Sec. 5.3).
These types of analysis are generally aided by first identifying similar space-time
paths.

http://www.openstreetmap.org/copyright
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A number of similarity measures exist in the literature (see [47], [41] for ex-
amples), and while it is not the goal of this paper to present a new comprehensive
method for similarity analysis, frequently, the task of space-time path similarity
search (or clustering) is a first step in an analytical workflow, designed to reduce
complexity and aid pattern recognition. As such, the HPT framework presented
here provides a useful heuristic for grouping similar space-time paths – with lit-
tle to no additional effort on the part of the analyst. This is because the goal of
the HPT algorithm is to minimize the size of the sub-volumes, and by doing so,
they are also implicitly minimizing the ‘distance’ between space-time paths. Ad-
ditionally, due to the incremental nature of the HPT update algorithm used here
(see Fig. 2 for a discussion of tree restructuring via rotations), the addition of a
new trajectory (or new control point in an existing trajectory) simply integrates
with the existing trajectory ‘clusters’, and subsequent updates can potentially
improve the optimality of the grouping over time.
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(a) Left split of binary HPT

x

y

t

0

5

10

15

20

(b) Right split of binary HPT

Fig. 5. Top-level split of a binary HPT (see Fig. 3) into left (a) and right (b) com-
ponents. Within each split, the right and left components of the second-level split are
denoted by different shading.

Figure 5 provides an example of the implicit ‘grouping’ of similar space-time
paths using the previous EnviroCar trajectories example from Fig. 3: a top-level
split of the tree into left (Fig. 5a) and right (Fig. 5b) components. This simple
two-stage split separates trajectories into similar path-types, with paths circling
Münster’s downtown core in Fig. 5a and cross-/inter-town paths in Fig. 5b. Fur-
ther similarity breakdowns can be observed, including two separate, temporally-
offset, spatially-similar groupings in Fig. 5a with one showing travel between the
University’s geosciences building in the north-west and the Loddenheide area in
the south (see Fig. 4 for reference).
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5.3 Joint Potential Path Areas

In time geography analysis, it is often of interest to identity areas where interac-
tions in space-time could occur. For example, researchers working with animal
telemetry data may be interested in mapping regions where inter- or intra-species
interactions may have occurred in an effort to better understand animal move-
ment behaviors (avoidance, attraction, etc.) [44]. Similarly, it may be useful
to highlight potential contact points for infectious disease transmission, or to
identify regions of high or low densities of space-time interactions [49]. For the
current example, we are interested in addressing the second question presented
in Sec. 5.1, where we are trying to identify locations in the study region that have
the highest number of CO2 estimates. By determining these regions of overlap
in space and time, we can potentially identify regions where we can have more
confidence in our estimated CO2 values.

To identify regions where multiple estimates have been made around the
same space-time, we need to identify potential ‘contact’ points between vehic-
ular trajectories, and then map their corresponding joint potential path areas
(jPPA) [50]. A potential path area describes the elliptical region in space that a
moving object or person could potentially reach given fixed start and end points.
It can be conceptualized as the projection of the spacetime prism between two
control points onto the geographical plane [3], [50]. As such, a jPPA is simply
the 2D projection of the intersection of two space-time prisms. Previously, this
type of analysis involved two steps: (1) determining potential space-time con-
tacts by temporally syncing trajectories and performing distance-based queries
at various time slices (space-time prisms can be used at the cost of additional
computation), and (2) computing the intersection of identified prism-pairs at
various time slices to compute the jPPA.

A naive version of the first step requires O(n2) queries across a pair of trajec-
tories, making it nearly impossible to scale to more than a handful of trajectories
or control-points. Some efficiencies can be gained by using spatial indexing sys-
tems in a GIS-framework, however, this is often not done in practice. Because
the HPT presented here is a binary tree (with a query time of O(log n)), we
are able to reduce the time complexity of this process to O(n log n) (additional
speed gains are possible via more efficient ‘dual-tree’ approaches [51,52]). Fig-
ure 6a shows an example result for this type of query for a single trajectory
to all other trajectories in a subset of the EnviroCar trajectories used previ-
ously. In this case, space-time contact is based on potential contact using the
space-time prisms along the trajectories. Building on this, Fig. 6b shows po-
tential contacts between all pairs of trajectories in the subset, along with their
corresponding PPAs (projected onto the x/y plane). With the contact points
identified, it is relatively straightforward to compute the relevant PPAs of the
interacting space-time prisms by projecting their intersecting portions (portions
that share the same space-time volume) onto the 2D geographic space. The jP-
PAs are then simply the geometric intersection of these PPAs (not shown), which
can be computed using standard computational geometry techniques.
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Fig. 6. Interaction patterns of a subset of the EnviroCar trajectories (see Fig. 5a), with
potential contact points (PCP) for a single trajectory with all other trajectories in the
subset (a), and the PCP between all trajectories in the subset and their corresponding
PPAs. Note that we are showing overlapping PPAs (with darker regions representative
of the jPPAs) that have been increased in size (×5) to aid in visualization.

6 Conclusions

The primary goal of this paper is to introduce methodological and technical im-
provements based on time-geographic theories and methods. To this end, we have
presented an extensible framework for scaling time geographic methods to the
increasingly large and diverse set of emerging spatio-temporal data sources. By
taking advantage of techniques from the computer graphics literature, and com-
bining these ideas in a time geography framework, we outline a hierarchical tree
of space-time prisms, or Hierarchical Prism Tree (HPT), that forms the basis for
a powerful computational framework for time geography research. In particular,
our HPT is able to embed both space-time paths and prisms in a 3D space-time.
This space-time tree is able to handle large volumes of space-time data that are
potentially dynamic (and/or real-time) in nature. We demonstrated the utility
of our approach using two common time geography analysis tasks, based on
(1) space-time path similarity analysis, and (2) identifying joint potential path
areas. While the work presented here is by no means exhaustive, it does provide
a useful initial exploration of the utility of thinking about the scalability of time
geographic methods. Indeed, the dynamic HPT presented in this paper provides
an ideal framework for scaling and exploring time-geographic methods and ideas
in an intuitive and computationally efficient manner.

The development of the HPT presented in this paper offers many avenues for
further development. Currently, we are exploring ways to scale various space-time
intersection queries in order to facilitate the data-driven generation of space-
time prisms for data integration, as discussed in [42]. Additionally, the dynamic
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nature of the HPT is designed to facilitate tracking and analysis of real-time
spatio-temporal data sources, such as those generated by the recently launched
ICARUS initiative7 or the long-established Argos system8. In order to make
time geography methods accessible to the research communities working with
such platforms, we are currently developing a suite of tools for working with
space-time data using the Python programing language. Python is continuing to
gain favor among data scientists and academic researchers, and implementation
of various time geography methods within our HPT framework should facilitate
increased adoption of time geography concepts and methods throughout the
social and environmental sciences. A computational framework that is able to
scale time geographic analysis from working with small, localized samples, to
large, globally-distributed (possibly real-time) data sources has the potential to
increase the utility of time geography concepts and methods to new domains
and research questions significantly.
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