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�ůĞǆĞŝ�WŽǌĚŶŽƵŬŚŽǀ͕�EĂƚŝŽŶĂů��ĞŶƚƌĞ�ĨŽƌ�'ĞŽĐŽŵƉƵƚĂƚŝŽŶ͕�EĂƚŝŽŶĂů�hŶŝǀĞƌƐŝƚǇ�ŽĨ�/ƌĞůĂŶĚ͕�DĂǇŶŽŽƚŚ

�ďƐƚƌĂĐƚ
/Ŷ�ƚŚŝƐ�ƉĂƉĞƌ͕�ǁĞ�ƐƵŐŐĞƐƚ�ƚŚĂƚ�Ă� � ĨŽĐƵƐ�ŽŶ�ƚŚĞ�ĐƵƌƌĞŶƚ�ƐƚƌĞŶŐƚŚƐ�ŽĨ�'/^ĐŝĞŶĐĞ͕�ĐŽƵƉůĞĚ�ǁŝƚŚ�Ă�ƐƚƌĂƚĞŐŝĐ�
ǀŝĞǁ� ƚŽǁĂƌĚƐ� ƚŚĞ� ĨƵƚƵƌĞ� ŽĨ� ĚĂƚĂͲĚƌŝǀĞŶ� ƌĞƐĞĂƌĐŚ͕� ĐĂŶ� ŚĞůƉ� ƚŽ� ƉƌŽƉĞů� '/^ĐŝĞŶĐĞ� ĨŽƌǁĂƌĚ� ĂƐ� Ă� ůĞĂĚĞƌ�
ŝŶ�ĚĂƚĂͲŝŶƚĞŶƐŝǀĞ� ƐŽĐŝĂů� ƐĐŝĞŶĐĞ͘�tŝƚŚ� ƚŚĞ�ŵĂũŽƌŝƚǇ�ŽĨ� ƚŚĞ�ǁŽƌůĚ͛Ɛ�ĚĂƚĂ�ďĞŝŶŐ�ĞŵďĞĚĚĞĚ� ŝŶ� ƐƉĂĐĞ͕� ŝƚ� ŝƐ�
ŽŶůǇ� ŶĂƚƵƌĂů� ĨŽƌ� '/^ĐŝĞŶĐĞ� ƚŽ� ƚĂŬĞ� Ă� ůĞĂĚĞƌƐŚŝƉ� ƌŽůĞ� ŝŶ� ƚŚĞ� ĂŶĂůǇƐŝƐ� ĂŶĚ� ƵŶĚĞƌƐƚĂŶĚŝŶŐ� ŽĨ� ŝŶĚŝǀŝĚƵĂů͕�
ůŽĐĂů͕� ƌĞŐŝŽŶĂů͕� ĂŶĚ� ŐůŽďĂů� ĚĂƚĂ� ďǇ� ƉƌŽǀŝĚŝŶŐ� ĐŽŶƚĞǆƚ͕� ƚŚĞŽƌǇ͕� ĂŶĚ� ŝŶƚĞůůŝŐĞŶĐĞ� ƚŽ� ĂŶ� ŽƚŚĞƌǁŝƐĞ� ĚĂƚĂͲ
ĐĞŶƚƌŝĐ�ƐĐŝĞŶĐĞ͘�tĞ�ƐƵŐŐĞƐƚ�ƚŚĂƚ�ŝŶ�ŽƌĚĞƌ�ƚŽ�ĂǀŽŝĚ�ƚŚĞ�ůŝŵŝƚĂƚŝŽŶƐ�ŽĨ�ĐƵƌƌĞŶƚ�ĚĂƚĂ�ƐƚŽƌĂŐĞ͕�ŵĂŶĂŐĞŵĞŶƚ͕�
ĂŶĚ� ƌĞƚƌŝĞǀĂů� ƉƌĂĐƚŝĐĞƐ͕� Ă� ĨŽĐƵƐ� ŽŶ� ƌĞĂůͲƚŝŵĞ͕� ŝŶƚĞůůŝŐĞŶƚ� ĂŶĂůǇƐŝƐ� ŽĨ� ĚĂƚĂ� ŝŶ� Ă� ƐƚƌĞĂŵŝŶŐ� ĨƌĂŵĞǁŽƌŬ�
ŝƐ� ƚŚĞ� ŵŽƐƚ� ůŽŐŝĐĂů� ƐƚĞƉ� ĨŽƌǁĂƌĚ͘� dŚŝƐ� ƚǇƉĞ� ŽĨ� ĂŶĂůǇƚŝĐĂů� ĨƌĂŵĞǁŽƌŬ� ĂĚĚƌĞƐƐĞƐ� ƚǁŽ� ŬĞǇ� ĐŽŶĐĞƌŶƐ� ŽĨ�
'/^ĐŝĞŶĐĞ͗�ƐĐĂůĂďŝůŝƚǇ�ĂŶĚ�ƌĞůĞǀĂŶĐĞ͘��Ǉ�ĨŽĐƵƐŝŶŐ�ŽŶ�ƌĞƐƵůƚƐ�ĂŶĚ�ŵŽĚĞůƐ�ŽǀĞƌ�ƌĂǁ�ĚĂƚĂ͕�ǁĞ�ďƵŝůĚ�ŽŶ�ƚŚĞ�
ĐƵƌƌĞŶƚ� ƐƚƌĞŶŐƚŚƐ� ŽĨ� '/^ĐŝĞŶĐĞ͕� ůĞĂĚŝŶŐ� ƚŽ� ƉƌŽĐĞƐƐͲďĂƐĞĚ� ƌĞƐĞĂƌĐŚ� ƚŚĂƚ� ŝƐ� ƐĐĂůĂďůĞ� ŽǀĞƌ� ƚŚĞ� ůŽŶŐͲƌƵŶ͘�
&ƵƌƚŚĞƌŵŽƌĞ͕�ďǇ�ĚĞǀĞůŽƉŝŶŐ� ƚŚĞ�ŵĞƚŚŽĚƐ�ĂŶĚ� ƚŚĞŽƌŝĞƐ�ĂƌŽƵŶĚ�ƐƚƌĞĂŵŝŶŐ�ƐƉĂƚŝĂů�ĚĂƚĂ͕�ǁĞ�ĞŶƐƵƌĞ� ƚŚĂƚ�
'/^ĐŝĞŶĐĞ� ƌĞŵĂŝŶƐ� ƌĞůĞǀĂŶƚ� ŝŶ� ƚŚĞ� ŝŶĐƌĞĂƐŝŶŐůǇ� ĚĂƚĂͲŝŶƚĞŶƐŝǀĞ� ǁŽƌůĚ� ŽĨ� ĐŽŵƉƵƚĂƚŝŽŶĂů� ƐŽĐŝĂů� ƐĐŝĞŶĐĞ�
ƌĞƐĞĂƌĐŚ͘

/ŶƚƌŽĚƵĐƚŝŽŶ
�ĂƚĂ� ŚĂƐ� ĂůǁĂǇƐ� ďĞĞŶ� ďŝŐ͘� ZĞƐĞĂƌĐŚĞƌƐ͕� ďƵƐŝŶĞƐƐĞƐ͕� ĂŶĚ� ŐŽǀĞƌŶŵĞŶƚ� ĚĞƉĂƌƚŵĞŶƚƐ� ŚĂǀĞ� ĐŽŶƚŝŶƵĂůůǇ�
ĐŽůůĞĐƚĞĚ� ĂŶĚ�ŵĂŝŶƚĂŝŶĞĚ� ůĂƌŐĞ� ĚĂƚĂƐĞƚƐ� ƌĞůĞǀĂŶƚ� ƚŽ� ƚŚĞŝƌ� ĂƌĞĂ� ŽĨ� ĞǆƉĞƌƚŝƐĞ͘� &Žƌ� ĚĞĐĂĚĞƐ͕� ͚ůĂƌŐĞ͛� ŚĂƐ�
ďĞĞŶ� Ă�ŵŽǀŝŶŐ� ƚĂƌŐĞƚ͕� ĐŚŝĞĨůǇ� ĚŝĐƚĂƚĞĚ� ďǇ� ƚŚĞ� ĂĐĐĞůĞƌĂƚŝŶŐ� ĚĞĐƌĞĂƐĞ� ŝŶ� ƉƌŽĐĞƐƐŝŶŐ� ĂŶĚ� ƐƚŽƌĂŐĞ� ĐŽƐƚƐ͘�
�ĞƐƉŝƚĞ�Ă�ůŽŶŐ�ŚŝƐƚŽƌǇ�ďĞŚŝŶĚ�ƚŚĞ�ƵƐĞ�ŽĨ�ůĂƌŐĞ�ĚĂƚĂ�ƐĞƚƐ�ĨŽƌ�ĚĞĐŝƐŝŽŶ�ŵĂŬŝŶŐ�ĂŶĚ�ĂŶĂůǇƐŝƐ�ďǇ�ďƵƐŝŶĞƐƐ�ĂŶĚ�
ŐŽǀĞƌŶŵĞŶƚ͕�͚ďŝŐ�ĚĂƚĂ͛�ŚĂƐ�ŽŶůǇ�ƌĞĐĞŶƚůǇ�ĞŵĞƌŐĞĚ�ĂƐ�ĂŶ�ĂƌĞĂ�ŽĨ�ŝŶƋƵŝƌǇ�ƵŶƚŽ�ŝƚƐĞůĨ͘�dŚŝƐ�ůĂƚĞ�ĞŵĞƌŐĞŶĐĞ�
ŽĨ�ďŝŐ�ĚĂƚĂ�ŝƐ�ůŝŬĞůǇ�Ă�ĨƵŶĐƚŝŽŶ�ŽĨ�ƐĞǀĞƌĂů�ĨĂĐƚŽƌƐ͕�ŝŶĐůƵĚŝŶŐ�ƚŚĞ�ĨĂĐƚ�ƚŚĂƚ�ŽƵƌ�ĂďŝůŝƚǇ�ƚŽ�ƐĞŶƐĞ͕�ĐŽůůĞĐƚ͕�ĂŶĚ�
ƉƌŽĐĞƐƐ�ĚĂƚĂ�ĨƌŽŵ�ŵƵůƚŝƉůĞ�ƐŽƵƌĐĞƐ� ŝƐ�ŶŽǁ�ĨĂƌ�ŽƵƚƉĂĐŝŶŐ�ŽƵƌ�ĂďŝůŝƚǇ�ƚŽ�ƐƚŽƌĞ�ĂŶĚ�ŵĂŶĂŐĞ�ƐĂŝĚ�ĚĂƚĂ�΀ϭ΁�
;&ŝŐƵƌĞ�ϭͿ͘��ĚĚŝƚŝŽŶĂůůǇ͕�ǁĞ�ĂƌĞ�ďĞŐŝŶŶŝŶŐ� ƚŽ� ƐĞĞ�Ă�ŵĂũŽƌ� ƐŚŝĨƚ� ŝŶ� ƚŚĞ�ǁĂǇ�ŵĂŶǇ�ƐĐŝĞŶƚŝƐƚƐ�ĂƌĞ� ƚŚŝŶŬŝŶŐ�
ĂďŽƵƚ� ŝŶĨŽƌŵĂƚŝŽŶ�ĂŶĚ�ĂŶĂůǇƐŝƐ͕� ůĞĂĚŝŶŐ�ƚŽ�Ă�ŵŽƌĞ�ĚĂƚĂͲŝŶƚĞŶƐŝǀĞ�ƐŽĐŝĂů� ƐĐŝĞŶĐĞ�ǁŚĞƌĞ�ŚǇƉŽƚŚĞƐĞƐ�ĂƌĞ�
ŐĞŶĞƌĂƚĞĚ�ƚŚƌŽƵŐŚ�ĂŶ�ĂďĚƵĐƚŝǀĞ�ƉƌŽĐĞƐƐ�;ŝ͘Ğ͕͘�ŚǇƉŽƚŚĞƐĞƐ�ĂƌĞ�ĚĞǀĞůŽƉĞĚ�ƚŽ�ĂĐĐŽƵŶƚ�ĨŽƌ�ŽďƐĞƌǀĞĚ�ĚĂƚĂͿ͘

tŝƚŚ� ŝŶĐƌĞĂƐŝŶŐůǇ� ĞĨĨŝĐŝĞŶƚ�ŵĞĂŶƐ� ŽĨ� ŐĞŶĞƌĂƚŝŶŐ� ĚĂƚĂ� ĨƌŽŵ�ŵƵůƚŝƉůĞ� ƐŽƵƌĐĞƐ͕� ƚŚĞ� ĂŵŽƵŶƚ� ĂŶĚ� ŶƵŵďĞƌ�
ŽĨ�ĚŝĨĨĞƌĞŶƚ� ƚǇƉĞƐ�ŽĨ�ĚĂƚĂ� ƚŚĂƚ� ŝŶĚƵƐƚƌǇ�ĂŶĚ�ŐŽǀĞƌŶŵĞŶƚ�ĐŽůůĞĐƚ�ŽŶ�Ă� ƌĞŐƵůĂƌ�ďĂƐŝƐ�ŚĂƐ� ƌĞĂĐŚĞĚ�ĐƌŝƚŝĐĂů�
ůĞǀĞůƐ͘� �ĚĚŝƚŝŽŶĂůůǇ͕� ŝŶĨŽƌŵĂƚŝŽŶ� ƉĞƌƚĂŝŶŝŶŐ� ƚŽ� Ăůů� ĨĂĐĞƚƐ� ŽĨ� ƐŽĐŝĞƚǇ͕� ĨƌŽŵ� ƉƵďůŝĐ� ĚĂƚĂďĂƐĞƐ� ƐƵĐŚ� ĂƐ�
ŶĂƚŝŽŶĂů�ĐĞŶƐƵƐ͕͛�ƚŽ�ƉƌŝǀĂƚĞ�ĐƵƐƚŽŵĞƌ�ĚĂƚĂďĂƐĞƐ͕�ƚŽ�ĐŽŵŵƵŶŝƚǇͲďƵŝůƚ�ŽƉĞŶ�ĚĂƚĂ�ƐŽƵƌĐĞƐ͕�ĂƌĞ�ŝŶĐƌĞĂƐŝŶŐůǇ�
ďĞŝŶŐ�ůŝŶŬĞĚ�ƚŽ�ŐĞŽŐƌĂƉŚŝĐĂů�ůŽĐĂƚŝŽŶƐ͘�/ŶĚĞĞĚ͕�ĂƐ�ŵƵĐŚ�ĂƐ�ϴϬй�ŽĨ�Ăůů�ŝŶĨŽƌŵĂƚŝŽŶ�ŚĞůĚ�ďǇ�ďƵƐŝŶĞƐƐ�ĂŶĚ�
ŐŽǀĞƌŶŵĞŶƚ�ŵĂǇ� ďĞ� ŐĞŽŐƌĂƉŚŝĐĂůůǇ� ƌĞĨĞƌĞŶĐĞĚ� ΀Ϯ͕ϵ΁͕� ĂŶĚ� ƚŚŝƐ� ŶƵŵďĞƌ� ŝƐ� ŽŶůǇ� ůŝŬĞůǇ� ƚŽ� ŐƌŽǁ� ĂƐ�ŵŽƌĞ�
ĂŶĚ�ŵŽƌĞ�ŽƌŐĂŶŝƐĂƚŝŽŶƐ� ƌĞĂůŝƐĞ� ƚŚĞ� ŝŵƉŽƌƚĂŶĐĞ�ŽĨ� ůŽĐĂƚŝŽŶĂů� ŝŶĨŽƌŵĂƚŝŽŶ� ΀ϲ΁͘� dŚĞ�ŵĂƐƐŝǀĞ�ĂŵŽƵŶƚƐ�ŽĨ�
ĚĂƚĂ� ďĞŝŶŐ� ĐŽůůĞĐƚĞĚ͕� ĐŽƵƉůĞĚ�ǁŝƚŚ� ƚŚĞ� ĂĚĚŝƚŝŽŶĂů� ĐŽŵƉůĞǆŝƚǇ� ƚŚĂƚ� ƐƉĂƚŝĂů� ĚĂƚĂ� ǇŝĞůĚƐ͕�ŵĞĂŶƐ� ƚŚĂƚ� ƚŚĞ�
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ƚƌĂĚŝƚŝŽŶĂů�'/^�ŵŽĚĞů�ŽĨ�ĚĂƚĂ�ƐƚŽƌĂŐĞ�ĂŶĚ�ŵĂŶĂŐĞŵĞŶƚ�ŝƐ�ŶŽ�ůŽŶŐĞƌ�ƐƵĨĨŝĐŝĞŶƚ͕�ĂŶĚ�ƚŚĂƚ�ŶĞǁ�ŝŶƐŝŐŚƚƐ�ŝŶƚŽ�
ƐƉĂƚŝĂů�ĚĂƚĂ�ŵĂŶĂŐĞŵĞŶƚ�ĂŶĚ�ĂŶĂůǇƐŝƐ�ĂƌĞ�ƌĞƋƵŝƌĞĚ͘�

&ŝŐƵƌĞ�ϭ͗�'ůŽďĂů�ŝŶĨŽƌŵĂƚŝŽŶ�ĐƌĞĂƚĞĚ�ĂŶĚ�ĂǀĂŝůĂďůĞ�ƐƚŽƌĂŐĞ�ƐƉĂĐĞ͘�&ƌŽŵ�dŚĞ��ĐŽŶŽŵŝƐƚ�;&Ğď�Ϯϱ�ϮϬϭϮͿ͘

/Ŷ� ƚŚĞ� ƉĂƐƚ͕� ƚŚĞ� ůŝŵŝƚŝŶŐ� ĨĂĐƚŽƌ� ĨŽƌ� ŐĞŽŐƌĂƉŚŝĐ� ŝŶĨŽƌŵĂƚŝŽŶ� ƐĐŝĞŶĐĞ� ŚĂƐ� ďĞĞŶ� ĚĂƚĂ͘� dŚŝƐ� ŝƐ� ďĞĐĂƵƐĞ�
'/^ĐŝĞŶĐĞ�ŚĂƐ� ůŽŶŐ�ďĞĞŶ�ĂŶ�ĂďĚƵĐƚŝǀĞ�ƐĐŝĞŶĐĞ͕�ĂŶĚ�ŝŶĨĞƌƌŝŶŐ�ƉƌŽĐĞƐƐĞƐ�ĨƌŽŵ�ƉĂƚƚĞƌŶƐ�ƌĞƋƵŝƌĞƐ�ĚĞƚĂŝůĞĚ�
ŝŶĨŽƌŵĂƚŝŽŶ�ŽŶ�ďŽƚŚ�ƚŚĞ�ůŽĐĂƚŝŽŶ�ĂŶĚ�ĂƚƚƌŝďƵƚĞƐ�ŽĨ�ƚŚĞ�ƉĂƌƚŝĐƵůĂƌ�ƉŚĞŶŽŵĞŶŽŶ�ƵŶĚĞƌ�ĐŽŶƐŝĚĞƌĂƚŝŽŶ͘�dŚŝƐ�
ĚĂƚĂ�ĐŽŶƐƚƌĂŝŶƚ�ŝƐ�ƉĂƌƚŝĐƵůĂƌůǇ�ƌĞůĞǀĂŶƚ�ƚŽ�'/^ĐŝĞŶĐĞ�ĚƵĞ�ƚŽ�ƚŚĞ�;ƉƌĞǀŝŽƵƐůǇͿ�ƉƌŽŚŝďŝƚŝǀĞ�ĐŽƐƚƐ�ĂƐƐŽĐŝĂƚĞĚ�
ǁŝƚŚ�ĐŽůůĞĐƚŝŶŐ�ĚĂƚĂ�ŽǀĞƌ�ůĂƌŐĞ�ƐƉĂƚŝĂů�ĞǆƚĞŶƚƐ͘��Ɛ�ƐƵĐŚ͕�ĚĞƐƉŝƚĞ�ƌĂƉŝĚ�ĚĞǀĞůŽƉŵĞŶƚ�ŽĨ�ƚŚĞŽƌǇ�ƚŚƌŽƵŐŚŽƵƚ�
ƚŚĞ� ϭϵϴϬƐ� ĂŶĚ� ϵϬƐ� ŝŶ� '/^� ĂŶĚ� ƋƵĂŶƚŝƚĂƚŝǀĞ� ŐĞŽŐƌĂƉŚǇ͕� ŵĂŶǇ� ŶĞǁ� ŝĚĞĂƐ� ǁĞƌĞ� ůĞĨƚ� ƵŶƚĞƐƚĞĚ� ĚƵĞ� ƚŽ� Ă�
ůĂĐŬ�ŽĨ�ƚŽŽůƐ�ĂŶĚͬŽƌ�ƚĞĐŚŶŽůŽŐǇ͘��ƵƌƌĞŶƚůǇ͕�'/^ĐŝĞŶĐĞ�;ĂŵŽŶŐ�ŽƚŚĞƌ�ĨŝĞůĚƐͿ� ŝƐ�ĞǆƉĞƌŝĞŶĐŝŶŐ�ƚŚĞ�ŽƉƉŽƐŝƚĞ�
ƉƌŽďůĞŵ͗�ƚŚĞ�ƌĂƉŝĚ�ƉĂĐĞ�ŽĨ�ĚĂƚĂ�ĐŽůůĞĐƚŝŽŶ�ŝƐ�ĞǆĐĞĞĚŝŶŐ�ƚŚĞ�ƌĞĂĐŚ�ŽĨ�ĐƵƌƌĞŶƚ�ƚŚĞŽƌǇ�ĂŶĚ�ŵĞƚŚŽĚƐ�΀ϴ΁͘

&ƌŽŵ� Ă� ĚĂƚĂ�ŵĂŶĂŐĞŵĞŶƚ� ƉĞƌƐƉĞĐƚŝǀĞ͕� ŝƚ� ŝƐ� ŶŽ� ůŽŶŐĞƌ� ĨĞĂƐŝďůĞ� ƚŽ� ƐƚŽƌĞ� ĚĂƚĂ� ƵƐŝŶŐ� ƚŚĞ� ƚŚĞ� ƚƌĂĚŝƚŝŽŶĂů�
ŐĞŽĚĂƚĂďĂƐĞ�ĚĞƐŝŐŶ͘��Ɛ�'/^ĐŝĞŶĐĞ�ĐŽŶƚŝŶƵĞƐ�ƚŽ�ŵŽǀĞ�ĨƌŽŵ�Ă�ƐĞƚ�ŽĨ�ƚŽŽůƐ�ĂŶĚ�ƚĞĐŚŶŝƋƵĞƐ�ĨŽƌ�ǁŽƌŬŝŶŐ�ǁŝƚŚ�
ŐĞŽŐƌĂƉŚŝĐ�ĚĂƚĂ�ƚŽ�Ă�ƐĐŝĞŶĐĞ�ŽĨ�ŐĞŽŐƌĂƉŚŝĐ�ŝŶĨŽƌŵĂƚŝŽŶ�΀ϰ΁͕�ŽƵƌ�ƌĞŵŝƚ�ŝƐ�ƐŚŝĨƚŝŶŐ�ĨƌŽŵ�ƚŚĞ�ĚĞǀĞůŽƉŵĞŶƚ�
ŽĨ� ƐŽĨƚǁĂƌĞ� ĂŶĚ� ŚĂƌĚǁĂƌĞ� ƐŽůƵƚŝŽŶƐ� ĨŽƌ� ĐĂƉƚƵƌŝŶŐ͕� ƐƚŽƌŝŶŐ͕� ŵĂŶĂŐŝŶŐ͕� ƌĞƚƌŝĞǀŝŶŐ͕� ĂŶĚ� ĚŝƐƐĞŵŝŶĂƚŝŶŐ�
ŐĞŽŐƌĂƉŚŝĐ�ĚĂƚĂ� ƚŽ�ŽŶĞ�ŽĨ� ĐŽŶƚĞǆƚ͕� ƚŚĞŽƌŝĞƐ͕� ĂŶĚ� ŝŶƚĞůůŝŐĞŶĐĞ͘� /ŶĚĞĞĚ͕� ƚŚĞ� ƚƌƵĞ� ƐƚƌĞŶŐƚŚƐ�ŽĨ�'/^ĐŝĞŶĐĞ�
ůŝĞ� ŝŶ� ŝƚƐ� ĂďŝůŝƚǇ� ƚŽ� ƉƌŽǀŝĚĞ� ƐƵďƐƚĂŶƚŝǀĞ� ŬŶŽǁůĞĚŐĞ͕� ĚĞǀĞůŽƉ� ŐĞŽƐƉĂƚŝĂů� ƚŚŝŶŬŝŶŐͬůŝƚĞƌĂĐǇ͕� ĂƐŬ� ƚŚĞ� ƌŝŐŚƚ�
ƋƵĞƐƚŝŽŶƐ͕� ŝŶƚĞƌƉƌĞƚ� ĚĂƚĂ� ĂŶĚ� ŽƵƚƉƵƚƐ�ǁŝƚŚŝŶ� ƚŚĞ� ĐŽƌƌĞĐƚ� ĐŽŶƚĞǆƚ͕� ĂŶĚ� ƵŶĚĞƌƐƚĂŶĚ� ƚŚĞ� ŝŵƉůŝĐĂƚŝŽŶƐ� ŽĨ�
ƌĞƐĞĂƌĐŚ� ĨŝŶĚŝŶŐƐ͘�tŝƚŚ� ƚŚŝƐ� ŝŶ�ŵŝŶĚ͕� ƚŚĞ� ďĞƐƚ� ǁĂǇ� ƚŚĂƚ� '/^ĐŝĞŶĐĞ� ĐĂŶ� ĐŽŶƚƌŝďƵƚĞ� ƚŽ� Ă� ĚĂƚĂͲŝŶƚĞŶƐŝǀĞ�
ƐĐŝĞŶĐĞ� ŝƐ� ƚŽ� ĨŽĐƵƐ� ŽŶ� ŝƚƐ� ƐƚƌĞŶŐƚŚƐ͕� ĂŶĚ� ƵƐĞ� ŝƚƐ� ŚŽŵĞ� ĨŝĞůĚ� ĂĚǀĂŶƚĂŐĞ� ŝŶ� ĨƵůů� ǁŚĞŶ� ĨŽƌĐĞĚ� ƚŽ� ĞŶƚĞƌ� Ă�
ƚŽƵƌŶĂŵĞŶƚ�ǁŝƚŚ�ĚĂƚĂͲŝŶƚĞŶƐŝǀĞ�ĐŽŵƉƵƚĞƌ�ƐĐŝĞŶĐĞ͘�

��ǁĂǇ�ĨŽƌǁĂƌĚ
tŚŝůĞ� '/^� ĚĞǀĞůŽƉŵĞŶƚ� ĂŶĚ� ĚĞƐŝŐŶ� ŚĂƐ͕� ŝŶ� ƚŚĞ� ƉĂƐƚ͕� ďĞĞŶ� ĚŽŶĞ� ƉƌŝŵĂƌŝůǇ� ǁŝƚŚŝŶ� '/^ĐŝĞŶĐĞ͕� ŝƚ� ŝƐ�
ƵŶƌĞĂůŝƐƚŝĐ�ƚŽ�ĂƐƐƵŵĞ�ƚŚĂƚ�'/^ĐŝĞŶƚŝƐƚƐ�ƐŚŽƵůĚ�ĐŽŶƚŝŶƵĞ�ƚŽ�ĚĞǀĞůŽƉ�ƐŽĨƚǁĂƌĞ�ĂŶĚ�ŚĂƌĚǁĂƌĞ�ƐŽůƵƚŝŽŶƐ�ĨŽƌ�
ƉƌŽĐĞƐƐŝŶŐ� ĂŶĚ� ĚŝƐƐĞŵŝŶĂƚŝŶŐ� ŐĞŽŐƌĂƉŚŝĐ� ĚĂƚĂ� ŽŶ� ŝƚƐ� ŽǁŶ͘� dŚĞƐĞ� ĂƌĞ� ƚŚŝŶŐƐ� ƚŚĂƚ� ĐŽŵƉƵƚĞƌ� ƐĐŝĞŶƚŝƐƚƐ͕�

Ϯ



ĞŶŐŝŶĞĞƌƐ͕�ĂŶĚ�ƐŽĨƚǁĂƌĞ�ĚĞǀĞůŽƉĞƌƐ�ǁŽƌŬŝŶŐ�ŽŶ�'/^�ĂŶĚ�ƌĞůĂƚĞĚ�ŝŶĨŽƌŵĂƚŝŽŶ�ƚĞĐŚŶŽůŽŐŝĞƐ�ĐĂŶ�ĚŽ͕�ĂŶĚ�ĚŽ�
ǁĞůů͘��Ǉ�ĨŽĐƵƐŝŶŐ�ŽŶ�ŚŝŐŚĞƌͲůĞǀĞů�ƉƌŽďůĞŵƐ�ĂŶĚ�ĐŽŶĐĞŶƚƌĂƚŝŶŐ�ŽŶ�ǁŚĂƚ�ĐĂŶ�ďĞ�ĚŽŶĞ�ǁŝƚŚ�ĚĂƚĂ�ƌĂƚŚĞƌ�ƚŚĂŶ�
Ă� ĨŽĐƵƐ�ŽŶ�ĚĂƚĂ� ŝƚƐĞůĨ͕�'/^ĐŝĞŶƚŝƐƚƐ�ĐĂŶ�ƉƌŽǀŝĚĞ� ƚŚĞ�ĐŽŶƚĞǆƚ͕� ƚŚĞŽƌǇ͕�ĂŶĚ� ŝŶƚĞůůŝŐĞŶĐĞ� ƌĞƋƵŝƌĞĚ�ďǇ�ŽƚŚĞƌ�
ĨŝĞůĚƐ�ƚŽ�ƉƌŽǀŝĚĞ�ƐŽůƵƚŝŽŶƐ�ƚŽ�ƐƉĂƚŝĂů�ƉƌŽďůĞŵƐ͘�

dŚĞ� ƚŚĞŽƌŝĞƐ� ĂŶĚ� ƚĞĐŚŶŝƋƵĞƐ� ďĞŚŝŶĚ� ƐƉĂƚŝĂů� ĂŶĂůǇƐŝƐ͕� '/^ǇƐƚĞŵƐ͕� ƐƉĂƚŝĂů� ƐƚĂƚŝƐƚŝĐƐ͕� ƐƉĂƚŝĂů� ĚĂƚĂ�
ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ͕�ĂŶĚ�ŽƚŚĞƌ�ĚĞǀĞůŽƉŵĞŶƚƐ�ǁŝƚŚŝŶ�ƚŚĞ�ƌĞĂůŵ�ŽĨ�'/^ĐŝĞŶĐĞ�ĂƌĞ�ďĞŝŶŐ�ƐƚƌĞƚĐŚĞĚ�ƚŽ�ĐĂƉĂĐŝƚǇ�
ďǇ�ŵŽĚĞƌŶ�ĚĂƚĂ�ƐĞƚƐ͘�/Ŷ�Ă�ƐƵƌǀĞǇ�ŽĨ�ĨŝĨƚǇͲĞŝŐŚƚ�ŬĞǇ�ƌĞƐĞĂƌĐŚĞƌƐ�ŝŶ�ƚŚĞ�ĨŝĞůĚ�ŽĨ�ƐƉĂƚŝĂů�ĂŶĂůǇƐŝƐ�;ĂŶĚ�ŵŽƌĞ�
ďƌŽĂĚůǇ͕�'/^ĐŝĞŶĐĞͿ͕�ŽǀĞƌĐŽŵŝŶŐ�ŵĞƚŚŽĚŽůŽŐŝĐĂů� ůŝŵŝƚĂƚŝŽŶƐ� ŝŵƉŽƐĞĚ�ďǇ� ůĂƌŐĞ�ĚĂƚĂƐĞƚƐ�ǁĂƐ�ŚŝŐŚůŝŐŚƚĞĚ�
ĂƐ�Ă�ŬĞǇ�ĐŚĂůůĞŶŐĞ�ĨŽƌ�ƚŚĞ�ĨƵƚƵƌĞ�΀ϴ΁͘�&ƵƌƚŚĞƌŵŽƌĞ͕�ǁŝƚŚ�ƚŚĞ�ƵďŝƋƵŝƚŽƵƐ�ĂĚŽƉƚŝŽŶ�ŽĨ�ǁĞďͲďĂƐĞĚ�ŵĂƉƉŝŶŐ�
ƐǇƐƚĞŵƐ� ĂŶĚ� ŝŶĐƌĞĂƐŝŶŐ� ĂǁĂƌĞŶĞƐƐ� ƚŚĂƚ� ͚ƐƉĂĐĞ�ŵĂƚƚĞƌƐ͕͛� '/^ĐŝĞŶĐĞ� ĂƐ� Ă� ĨŝĞůĚ� ŝƐ� ŶŽǁ� Ă� ŶĞƚͲĞǆƉŽƌƚĞƌ� ŽĨ�
ŵĞƚŚŽĚƐ�ĂŶĚ�ŝĚĞĂƐ�΀ϳ΁͕�ĂŶĚ�ŵĂŝŶƚĂŝŶŝŶŐ�ƚŚĞ�ŚŽŵĞ�ĨŝĞůĚ�ĂĚǀĂŶƚĂŐĞ�ŝŶ�ƚĞƌŵƐ�ŽĨ�ƐƉĂƚŝĂů�ĂŶĂůǇƐŝƐ�ǁŝůů�ďĞ�Ă�
ŬĞǇ�ĚĞĐŝĚŝŶŐ�ƉŽŝŶƚ�ŝŶ�ƚŚĞ�ƐƵĐĐĞƐƐ�ŽĨ�'/^ĐŝĞŶĐĞ�ŝŶ�Ă�ĚĂƚĂͲĚƌŝǀĞŶ�ǁŽƌůĚ͘

�ŽŶƚĞǆƚ͕�ƚŚĞŽƌǇ͕�ĂŶĚ�ŝŶƚĞůůŝŐĞŶĐĞ
�� '/^ĐŝĞŶĐĞ� ĨŽĐƵƐĞĚ� ŽŶ� ƚŚĞ� ŝŵƉůĞŵĞŶƚĂƚŝŽŶ� ĚĞƚĂŝůƐ� ŽĨ� '/^ǇƐƚĞŵƐ� ǁŝůů� ĚĞǀĞůŽƉ� ͚ƵƐĞƌƐ͛� ƌĂƚŚĞƌ�
ƚŚĂŶ� ͚ƌĞƐĞĂƌĐŚĞƌƐ͕͛� ǁŚĞƌĞ� ƵƐĞƌƐ� ͞ǁŝůů� ƐĞĞ� ƚŚĞ� ǁŽƌůĚ� ƚŚƌŽƵŐŚ� Ă� ůĞŶƐ� ĚĞĨŝŶĞĚ� ďǇ� ƚŚĞ� ĐŽŶƐƚƌĂŝŶƚƐ� ĂŶĚ�
ƉƌŝŶĐŝƉůĞƐ�ŽĨ�ĚĂƚĂďĂƐĞ�ĚĞƐŝŐŶ͟�΀ϰ΁�ĂŶĚ�ůĞŐĂĐǇ�'/^�ƚŚŝŶŬŝŶŐ͘�/ŶƐƚĞĂĚ͕�ǁĞ�ƐƵŐŐĞƐƚ�ƚŚĂƚ�Ă�ŵŽƌĞ�ĨƵŶĚĂŵĞŶƚĂů�
ĂƉƉƌŽĂĐŚ͕� ďĂƐĞĚ� ŽŶ� ƵƐŝŶŐ� ŐĞŽŐƌĂƉŚŝĐ� ŬŶŽǁůĞĚŐĞ� ĂŶĚ� ƚŚĞŽƌŝĞƐ� ƚŽ� ƌĞĨŝŶĞ� ŽƵƌ� ŵĞƚŚŽĚƐ� ĂŶĚ� ĞǆƉĂŶĚ�
ŽƵƌ� ƵŶĚĞƌƐƚĂŶĚŝŶŐ� ŽĨ� ƐƉĂƚŝĂů� ƉƌŽĐĞƐƐĞƐ� ŝƐ�ǁĂƌƌĂŶƚĞĚ͘� ,ĞƌĞ͕� ƚŚĞ� ƵƐĞ� ŽĨ� ŐĞŽŐƌĂƉŚŝĐ� ŝŶĨŽƌŵĂƚŝŽŶ� ƚŚĞŽƌǇ�
ŝƐ� ƵƐĞĨƵů͕� ďƵƚ� ŶŽƚ� ƐƵĨĨŝĐŝĞŶƚ� ŽŶ� ŝƚƐ� ŽǁŶ͘� WƌŽĐĞƐƐͲďĂƐĞĚ� ƚŚĞŽƌŝĞƐ� ƐƵĐŚ� ĂƐ� ƐƉĂƚŝĂů� ŝŶƚĞƌĂĐƚŝŽŶ͕� ƐƉĂƚŝĂů�
ďĞŚĂǀŝŽƵƌ͕�ĂŶĚ�ƐƉĂƚŝĂů�ĚŝĨĨƵƐŝŽŶ�ƐŚŽƵůĚ�ĂůƐŽ�ďĞ�ĐŽŶƐŝĚĞƌĞĚ͕�ĂŶĚ�ĐĂŶ�ĐŽŶƚƌŝďƵƚĞ�ƚŽ�Ă�ƉƌŽĐĞƐƐͲ�Žƌ�ŵŽĚĞůͲ
ďĂƐĞĚ� '/^ĐŝĞŶĐĞ� ǁŚĞƌĞ� ŵŽĚĞůƐ� ĂŶĚ� ůŝŶŬĞĚ� ŝŶĨŽƌŵĂƚŝŽŶ� ĂƌĞ� ƵƐĞĚ� ƚŽ� ƐŽůǀĞ� ĨƵŶĚĂŵĞŶƚĂůůǇ� ŐĞŽŐƌĂƉŚŝĐ�
ƉƌŽďůĞŵƐ͘�dŚĞ�ŬĞǇ�ĐŽŵƉŽŶĞŶƚ�ƚŽ�ĚĞǀĞůŽƉŝŶŐ�ŐĞŽŐƌĂƉŚŝĐĂů�ŝŶƚĞůůŝŐĞŶĐĞ�ŝƐ�ƚŚĞ�ŝŶƚĞŐƌĂƚŝŽŶ�ŽĨ�ĐŽŶƚĞǆƚ�;ŝ͘Ğ͕͘�
ǁŚĞŶ͕�ǁŚĞƌĞ͕�ĂŶĚ�ǁŚĂƚ�ƐƉĂƚŝĂů�ƉĂƚƚĞƌŶƐ�ǁĞƌĞ�ŐĞŶĞƌĂƚĞĚͿ�ĂŶĚ�ƚŚĞŽƌǇ�;ŝ͘Ğ͕͘�ǁŚǇ�ĂŶĚ�ŚŽǁ�ĚŽ�ƚŚĞ�ŽďƐĞƌǀĞĚ�
ƉĂƚƚĞƌŶƐ�ĐŽƌƌĞƐƉŽŶĚ�ƚŽ�ŬŶŽǁŶ�ƉƌŽĐĞƐƐĞƐͿ͘

&Žƌ� ĞǆĂŵƉůĞ͕� ŝŶ� ƐƚƵĚŝĞƐ� ŽĨ� ĐŽŵŵƵƚŝŶŐ͕� ƌĞƐĞĂƌĐŚĞƌƐ� ĂƌĞ� ŽĨƚĞŶ� ŝŶƚĞƌĞƐƚĞĚ� ŝŶ� ƉƌĞĚŝĐƚŝŶŐ� ƚŚĞ� ŶƵŵďĞƌ�
ŽĨ� ĐŽŵŵƵƚĞƌƐ� ƚƌĂǀĞůŝŶŐ� ďĞƚǁĞĞŶ� Ă� ƉĂƌƚŝĐƵůĂƌ� ŽƌŝŐŝŶ� ĂŶĚ� ĚĞƐƚŝŶĂƚŝŽŶ� ƉĂŝƌ͕� Žƌ� ƚŚĞ� ĚĞƐƚŝŶĂƚŝŽŶ� ƚŚĂƚ� Ă�
ĐŽŵŵƵƚĞƌ�Ăƚ�Ă�ƉĂƌƚŝĐƵůĂƌ�ŽƌŝŐŝŶ�ŵŝŐŚƚ�ĐŚŽŽƐĞ�ĨƌŽŵ�Ă�ƌĂŶŐĞ�ŽĨ�ƉŽƐƐŝďůĞ�ĚĞƐƚŝŶĂƚŝŽŶƐ͘�,ĞƌĞ͕�ƚŚĞ�ĐŽŶƚĞǆƚ�ŝƐ�
ĐůĞĂƌ͗�ƚŚĞ�ƉŚĞŶŽŵĞŶŽŶ�ƵŶĚĞƌ�ŝŶǀĞƐƚŝŐĂƚŝŽŶ�ŝƐ�ĐŽŵŵƵƚŝŶŐ�ĂŶĚ�ƚŚĞ�ƐƉĂƚŝĂů�ƐĞƚƚŝŶŐ�ŝƐ�;ƵƐƵĂůůǇͿ�ƐŽŵĞ�ƵƌďĂŶ�
ĞŶǀŝƌŽŶŵĞŶƚ͘� �Ɛ� ƐƵĐŚ͕� ĐŽŶƚĞǆƚ� ĞŶĐŽŵƉĂƐĞƐ� ƚŚĞ� ƉƌŽďůĞŵ� ƐĐĞŶĂƌŝŽ� ;ŝ͘Ğ͕͘� ƉƌĞĚŝĐƚŝŶŐ� ĐŽŵŵƵƚŝŶŐ� ĨůŽǁƐͿ͕�
ŝŶĨŽƌŵĂƚŝŽŶ�ƌĞƋƵŝƌĞŵĞŶƚƐ�;ŝ͘Ğ͕͘�ĐŽƵŶƚƐ͕�ƐŽĐŝŽͲĞĐŽŶŽŵŝĐ�ĨĂĐƚŽƌƐ͕�ĚŝƐƚĂŶĐĞƐͿ͕�ƌĞƋƵŝƌĞĚ�ůĞǀĞů�ŽĨ�ĚĞƚĂŝů�;ŝ͘Ğ͕͘�
ŵĂĐƌŽ�ǀƐ�ŵŝĐƌŽͿ͕�ĂŶĚ�ƚĂƌŐĞƚ�ŽƵƚƉƵƚƐ�;ŝ͘Ğ͕͘�ŵĂƉƐ͕�ŵŽĚĞů�ƉĂƌĂŵĞƚĞƌƐ͕�ƉƌĞĚŝĐƚŝŽŶƐͿ͘�tŚŝůĞ�ĐŽŶƚĞǆƚ�ŐƵŝĚĞƐ�
ŽƵƌ�ƚƌĞĂƚŵĞŶƚ�ŽĨ�ƚŚĞ�ƉƌŽďůĞŵ͕�ƚŚĞŽƌǇ�ƉƌŽǀŝĚĞƐ�ƚŚĞ�ŵĞĂŶƐ�ƚŽ�ĚĞǀĞůŽƉŝŶŐ�Ă�ƐŽůƵƚŝŽŶ͘�/Ŷ�ƚŚĞ�ĂďŽǀĞ�ĐĂƐĞ�ŽĨ�
ƉƌĞĚŝĐƚŝŶŐ�ĐŽŵŵƵƚŝŶŐ�ĨůŽǁƐ͕�ǁĞ�ĐĂŶ�ŝŶĐŽƌƉŽƌĂƚĞ�ƚŚĞŽƌŝĞƐ�ŽĨ�ƐƉĂƚŝĂů�ŝŶƚĞƌĂĐƚŝŽŶ�;ŝ͘Ğ͕͘�ŵĂĐƌŽ�ĐŽŵŵƵƚŝŶŐͿ�
Žƌ� ƐƉĂƚŝĂů� ĐŚŽŝĐĞ� ;ŝ͘Ğ͘� ŵŝĐƌŽ� ĐŽŵŵƵƚŝŶŐͿ� ƚŽ� ŝŶĨŽƌŵ� ŽƵƌ� ŵŽĚĞůƐ͘� dŚŝƐ� ƉƌŽǀŝĚĞƐ� ƵƐ� ǁŝƚŚ� ĂĚĚŝƚŝŽŶĂů�
ŝŶĨŽƌŵĂƚŝŽŶ�ƌĞƋƵŝƌĞŵĞŶƚƐ�ĂŶĚ�Ă�ĨƌĂŵĞǁŽƌŬ�ǁŝƚŚŝŶ�ǁŚŝĐŚ�ƚŽ�ĐŽŵƉĂƌĞ�ŽƵƌ�ƌĞƐƵůƚƐ�;ŝ͘Ğ͕͘�ĚŽ�ƚŚĞƐĞ�ƌĞƐƵůƚƐ�
ŵĂŬĞ� ƚŚĞŽƌĞƚŝĐĂů� ƐĞŶƐĞ͍Ϳ͘� /Ŷ� ƚŚŝƐ� ƐĞŶƐĞ͕� ĚĞǀĞůŽƉŝŶŐ� ŐĞŽŐƌĂƉŚŝĐĂů� ŝŶƚĞůůŝŐĞŶĐĞ� ŝƐ� Ă� ƐǇŶĞƌŐŝƐƚŝĐ� ƉƌŽĐĞƐƐ͗�
ŝŶƚĞůůŝŐĞŶĐĞ� ĐŽŵĞƐ� ĨƌŽŵ� ƵŶĚĞƌƐƚĂŶĚŝŶŐ� ƐƉĂƚŝĂů� ƉƌŽĐĞƐƐĞƐ͕� ƐƉĂƚŝĂů� ƉƌŽĐĞƐƐĞƐ� ĐĂŶ� ďĞ� ĂƉƉƌŽǆŝŵĂƚĞĚ� ǀŝĂ�
ŵŽĚĞůƐ͕�ŵŽĚĞůƐ�ĂƌĞ�ĚŝƌĞĐƚůǇ�ŝŶĨŽƌŵĞĚ�ďǇ�ƚŚĞŽƌǇ͕�ĂŶĚ�ƚŚĞŽƌǇ�ŝƐ�ŝŶĞǆƚƌŝĐĂďůǇ�ůŝŶŬĞĚ�ƚŽ�ƚŚĞ�ĐŽŶƚĞǆƚ�ǁŝƚŚŝŶ�
ǁŚŝĐŚ�ŝƚ�ŽƉĞƌĂƚĞƐ͘

tŝƚŚ� ƚŚĞƐĞ� ƉŽŝŶƚƐ� ŝŶ�ŵŝŶĚ͕� ǁĞ� ƐƵŐŐĞƐƚ� ƚŚĂƚ� ƚŚĞ�ŵŽƐƚ� ůŽŐŝĐĂů� ƐƚĞƉ� ĨŽƌǁĂƌĚ� ĨŽƌ� '/^ĐŝĞŶĐĞ� ŝƐ� Ă�ŵŽĚĞůͲ
ĐĞŶƚƌŝĐ� ǀŝĞǁ� ŽŶ� ĂŶĂůǇƐŝƐ͕� ǁŚĞƌĞ� ƚŚĞ� ĨŽĐƵƐ� ŝƐ� ŽŶ� ƌĞĂůͲƚŝŵĞ͕� ŝŶƚĞůůŝŐĞŶƚ� ĂŶĂůǇƐŝƐ� ŽĨ� ĚĂƚĂ� ŝŶ� Ă� ƐƚƌĞĂŵŝŶŐ�
ĨƌĂŵĞǁŽƌŬ͘�dŚŝƐ�ƚǇƉĞ�ŽĨ�ƌĞƐĞĂƌĐŚ�ĨƌĂŵĞǁŽƌŬ�ĂůůŽǁƐ�'/^ĐŝĞŶƚŝƐƚƐ�ƚŽ�ĨŽĐƵƐ�ŽŶ�ƚŚĞ�ƐƚƌĞŶŐƚŚƐ�ŽĨ�'/^ĐŝĞŶĐĞ�
;ŝ͘Ğ͕͘�ŽŶƚŽůŽŐŝĞƐ͕�ƐƉĂƚŝĂůůǇͲĂǁĂƌĞ�ƐƚĂƚŝƐƚŝĐĂů�ŵĞƚŚŽĚƐ�ĂŶĚ�ƚŚĞŽƌŝĞƐͿ͕�ĂŶĚ�ĂǀŽŝĚƐ�ƉƌŽďůĞŵƐ�ĂƐƐŽĐŝĂƚĞĚ�ǁŝƚŚ�
ƚŚĞ�ƐƚŽƌĂŐĞ�ĂŶĚ�ƌĞƚƌŝĞǀĂů�ƉĂƌĂĚŝŐŵ�ŽĨ�ƚƌĂĚŝƚŝŽŶĂů�ŐĞŽĚĂƚĂďĂƐĞƐ͘�/Ŷ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ƐĞĐƚŝŽŶ�ǁĞ�ĚĞƐĐƌŝďĞ�ƚŚĞ�

ϯ



ďĞŶĞĨŝƚƐ�ŽĨ�ƐƚƌĞĂŵŝŶŐ�ĂŶĂůǇƚŝĐƐ͕�ĂŶĚ�ŽƵƚůŝŶĞ�Ă�ĨƌĂŵĞǁŽƌŬ�ǁŚŝĐŚ�ǁŽƵůĚ�ĂůůŽǁ�Ă�ŵŽĚĞůͲĐĞŶƚƌŝĐ�'/^ĐŝĞŶĐĞ�
ƚŽ�ĐŽŶƚƌŝďƵƚĞ�ƚŽ�ƚŚĞ�ďŝŐ�ĚĂƚĂ�ĂŐĞŶĚĂ͘

&ŽĐƵƐ�ŽŶ�ƐƚƌĞĂŵŝŶŐ
�ƉƉůŝĐĂƚŝŽŶƐ� ǁŚĞƌĞ� ƌĞĂůͲƚŝŵĞ� ĂŶĂůǇƐŝƐ� ŽĨ� ŵŝůůŝŽŶƐ� ŽĨ� ƚĞŵƉŽƌĂůůǇ� ǀĂƌǇŝŶŐ� ƐƉĂƚŝĂůůǇ� ƌĞĨĞƌĞŶĐĞĚ� ƐĂŵƉůĞƐ�
ŽǀĞƌ�ǁŝĚĞ�ŐĞŽŐƌĂƉŚŝĐĂů�ĂƌĞĂƐ�ĂƌĞ�ƌĞƋƵŝƌĞĚ�ĂƌĞ�ďĞĐŽŵŝŶŐ�ĂŶ�ĞǀĞƌǇĚĂǇ�ŶĞĐĞƐƐŝƚǇ͘�/Ŷ�ĂĚĚŝƚŝŽŶ�ƚŽ�ŝŶĐƌĞĂƐŝŶŐ�
ǀŽůƵŵĞƐ�ŽĨ�ƐĞŶƐŽƌ�ĚĂƚĂ�ƉƌŽĚƵĐĞĚ�ďǇ�ĐŝƚǇ�ŝŶĨƌĂƐƚƌƵĐƚƵƌĞƐ͕�ƌĞĂůͲƚŝŵĞ�ĚĂƚĂ�ĨĞĞĚƐ�ŽĨ�ƵƐĞƌƐΖ�ĂĐƚŝǀŝƚŝĞƐ�ƚŚƌŽƵŐŚ�
ǀĂƌŝŽƵƐ� ĂƉƉůŝĐĂƚŝŽŶƐ� ƐƵĐŚ� ĂƐ� dǁŝƚƚĞƌ� ΀ϭϮ΁͕� &ůŝĐŬƌ͕� &ŽƵƌƐƋƵĂƌĞ� ĂŶĚ� ŽƚŚĞƌƐ� ĂƌĞ� ďĞĐŽŵŝŶŐ� ŝŶĐƌĞĂƐŝŶŐůǇ�
ĂǀĂŝůĂďůĞ͘� >ŽĐĂƚŝŽŶͲĂǁĂƌĞ� ĂƉƉůŝĐĂƚŝŽŶƐ� ĂŶĚ� ůŽĐĂƚŝŽŶͲďĂƐĞĚ� ƐĞƌǀŝĐĞƐ� ŚĂǀĞ� ďĞĐŽŵĞ� ƉŽƉƵůĂƌ� ŝŶ� ƌĞĐĞŶƚ�
ǇĞĂƌƐ͕�ƐƵĐŚ�ƚŚĂƚ�ŵĂŶǇ�ĚĂƚĂ�ĨĞĞĚƐ�ŶŽǁ�ŚĂǀĞ�Ă�ŐĞŽŐƌĂƉŚŝĐ�ĞůĞŵĞŶƚ�ďǇ�ĚĞĨĂƵůƚ͕� ƚŚƵƐ�ďĞĐŽŵŝŶŐ�ĨŽƌŵƐ�ŽĨ�
ǀŽůƵŶƚĞĞƌ�ŐĞŽŐƌĂƉŚŝĐ�ŝŶĨŽƌŵĂƚŝŽŶ͘�dŚĞƌĞ�ŝƐ�ŵƵĐŚ�ƉŽƚĞŶƚŝĂů�ĨŽƌ�'/^ĐŝĞŶĐĞ�ƚŽ�ĞǆƉůŽƌĞ�ƐƉĂƚŝĂů�ƌĞůĂƚŝŽŶƐŚŝƉƐ�
ŝŶ�ƐƵĐŚ�ĚĂƚĂ�ƚŽ�ƵŶĚĞƌƐƚĂŶĚ�ƐƉĂƚŝĂů�ƉĂƚƚĞƌŶƐ�ĞŵĞƌŐŝŶŐ�ĨƌŽŵ�ůŽǁͲůĞǀĞů�ŚƵŵĂŶ�ĂĐƚŝŽŶƐ�ĂŶĚ�ŝŶƚĞƌĂĐƚŝŽŶƐ͘

>ĂƌŐĞ� ĚĂƚĂ� ǀŽůƵŵĞƐ� ĂŶĚ� ƚŚĞ� ĐŽŵƉůĞǆ� ŵĞĐŚĂŶŝƐŵƐ� ďĞŚŝŶĚ� ĚĂƚĂ� ŐĞŶĞƌĂƚŝŽŶ� ƉƌŽĐĞƐƐĞƐ� ƌĞƋƵŝƌĞ� ŶĞǁ�
ĂŶĂůǇƚŝĐĂů�ĂƉƉƌŽĂĐŚĞƐ�ǁŚŝĐŚ�ĂƌĞ�ĨůĞǆŝďůĞ͕�ŶŽŶͲƉĂƌĂŵĞƚƌŝĐ͕�ĐŽŵƉƵƚĂƚŝŽŶĂůůǇ�ĞĨĨŝĐŝĞŶƚ͕�ĂŶĚ�ĂďůĞ�ƚŽ�ƉƌŽǀŝĚĞ�
ŝŶƚĞƌƉƌĞƚĂďůĞ� ƌĞƐƵůƚƐ� ĨŽƌ� ŵŽĚĞůůŝŶŐ� ŶŽŶͲƐƚĂƚŝŽŶĂƌǇ� ĂŶĚ� ŶŽŶͲůŝŶĞĂƌ� ƉƌŽĐĞƐƐĞƐ� ŝŶ� ĚĂƚĂͲƌŝĐŚ� ƐŝƚƵĂƚŝŽŶƐ͘� �
DĂĐŚŝŶĞ� ůĞĂƌŶŝŶŐ� ŽĨĨĞƌƐ� Ă� ƐĞůĞĐƚŝŽŶ� ŽĨ� ŽŶůŝŶĞ� ĂůŐŽƌŝƚŚŵƐ� ĚĞƐŝŐŶĞĚ� ĨŽƌ� ƐƚƌĞĂŵŝŶŐ� ĚĂƚĂ͕� ǁŚĞƌĞ� ŝƚ� ŝƐ�
ĂƐƐƵŵĞĚ� ƚŚĂƚ� ĞǀĞƌǇ� ĚĂƚĂ� ƐĂŵƉůĞ� ĐĂŶ� ŽŶůǇ� ďĞ� ƐĞĞŶ� ŽŶĐĞ� ĂŶĚ� ƉƌŽĐĞƐƐĞĚ� ŝŶ� ĐŽŶƐƚĂŶƚ� ƚŝŵĞ͘� �ůŐŽƌŝƚŚŵŝĐ�
ƐŽůƵƚŝŽŶƐ� ĨŽƌ� ƐƵĐŚ� ƐǇƐƚĞŵƐ� ĐĂŶ� ďĞ� ďŽƌƌŽǁĞĚ� ĨƌŽŵ� ƚŚĞ� ƐŝŐŶĂů� ƉƌŽĐĞƐƐŝŶŐ� ĨŝĞůĚ͕� ǁŚĞƌĞ� ƐƚƌĞĂŵŝŶŐ� ĚĂƚĂ�
ŚĂǀĞ� ďĞĞŶ� ƐƚƵĚŝĞĚ� ĨŽƌ� ĚĞĐĂĚĞƐ� ĂŶĚ� ĞĨĨŝĐŝĞŶƚ� ŝŶĐƌĞŵĞŶƚĂů� ŵĞƚŚŽĚƐ� ĨŽƌ� ƚǇƉŝĐĂů� ŽƉƚŝŵŝƐĂƚŝŽŶ� ƉƌŽďůĞŵƐ�
;Ğ͘Ő͕͘� ůĞĂƐƚ� ƐƋƵĂƌĞƐ� ŽƉƚŝŵŝǌĂƚŝŽŶ͕� ŵĂƚƌŝǆ� ŝŶǀĞƌƐŝŽŶ� ĂŶĚ� ĚĞĐŽŵƉŽƐŝƚŝŽŶƐͿ� ŚĂǀĞ� ďĞĞŶ� ĚĞǀĞůŽƉĞĚ͘� ^ƵĐŚ�
ĂƉƉƌŽĂĐŚĞƐ�ŽĨĨĞƌ�ƐƚƌĂŝŐŚƚĨŽƌǁĂƌĚ�ĞǆƚĞŶƐŝŽŶƐ�ŽĨ�ŵĂŶǇ�ƐƉĂƚŝĂů�ƐƚĂƚŝƐƚŝĐĂů�ŵŽĚĞůƐ�ƚŽ�ďĞ�ĂƉƉůŝĞĚ�ŝŶ�ƌĞĂů�ƚŝŵĞ�
ƚŽ�ƚĞŵƉŽƌĂůůǇͲǀĂƌǇŝŶŐ�ĚĂƚĂ�ƐƚƌĞĂŵƐ͘

&ŝŐƵƌĞ�Ϯ͗���ƚƌĂŶƐŝƚŝŽŶ�ĨƌŽŵ�ĚĂƚĂͲ�ƚŽ�ŵŽĚĞůͲĐĞŶƚƌŝĐ�ĚĞƐŝŐŶ�ƚƵƌŶƐ�Ă�'/^�ŝŶƚŽ�Ă�ƐƉĂƚŝĂů�ŬŶŽǁůĞĚŐĞ�ĚŝƐĐŽǀĞƌǇ�ƉůĂƚĨŽƌŵ͘

�ǆĐŝƚĞŵĞŶƚ� ƐƵƌƌŽƵŶĚŝŶŐ� ďŝŐ� ĚĂƚĂ� ŝƐ� ĐŽŶƚŝŶƵŝŶŐ� ƚŽ� ďƵŝůĚ� ;ƐĞĞ� ΀ϭ΁Ϳ͕� ǇĞƚ� ĨŽƌ� ƚŚĞ� ŵŽƐƚ� ƉĂƌƚ͕� ďŝŐ� ĚĂƚĂ�
ĂŶĂůǇƚŝĐƐ�ĨŽƌ�ƐƉĂƚŝĂů�ĚĂƚĂ�ŚĂƐ�ĨŽĐƵƐĞĚ�ŽŶ�ĚĂƚĂ�ǀŝƐƵĂůŝƐĂƚŝŽŶ�ĂŶĚ�ĚĞƐĐƌŝƉƚŝǀĞ�ĂŶĂůǇƐŝƐ�Ͳ�Ă�ƌĞƚƵƌŶ�ƚŽ�Ă�ĚĂƚĂͲ
ŝŶƚĞŶƐŝǀĞ�ǀĞƌƐŝŽŶ�ŽĨ�ƉƌĞͲϭϵϱϬƐ�ŐĞŽŐƌĂƉŚǇ�΀ϱ΁͘�tŝƚŚ�Ă�ůĂƌŐĞ�ƌĂŶŐĞ�ŽĨ�ƐƉĂƚŝĂů�ƚŚĞŽƌŝĞƐ�ĂŶĚ�ĚŽŵĂŝŶ�ƐƉĞĐŝĨŝĐ�
ƚĞĐŚŶŝƋƵĞƐ�ĂǀĂŝůĂďůĞ͕�'/^ĐŝĞŶĐĞ�ƐŚŽƵůĚ�ŶŽƚ�ďĞ�ĚŽŵŝŶĂƚĞĚ�ďǇ�ƐŝŵƉůŝƐƚŝĐ�ĚĞƐĐƌŝƉƚŝŽŶ͕�ďƵƚ�ŵĂŝŶƚĂŝŶ�ŝƚƐ�ĨŽĐƵƐ�
ŽŶ�ƚŚĞŽƌĞƚŝĐĂů�ƵŶĚĞƌƐƚĂŶĚŝŶŐ͘���ŵŽĚĞůͲĐĞŶƚƌŝĐ�'/^ĐŝĞŶĐĞ�ƌĞƚƵƌŶƐ�ĨŽĐƵƐ�ƚŽ�ŵŽĚĞůůŝŶŐ�ĂŶĚ�ƵŶĚĞƌƐƚĂŶĚŝŶŐ�
ƚŚĞ� ƵŶĚĞƌůǇŝŶŐ� ƐƉĂƚŝĂů� ƉƌŽĐĞƐƐĞƐ� ƌĂƚŚĞƌ� ƚŚĂŶ� ŽŶŐŽŝŶŐ� ĂƚƚĞŵƉƚƐ� ƚŽ� ŽǀĞƌĐŽŵĞ� ƚŚĞ� ƐƚŽƌĂŐĞ� ďŽƚƚůĞŶĞĐŬ͘�
dŚĞƌĞ� ŝƐ� ůŝƚƚůĞ� ƐĞŶƐĞ� ŝŶ� ƐƚŽƌŝŶŐ� Ăůů� ƚŚĞ�ĚĂƚĂ� ŝĨ� Ă�ŵŽĚĞů�ǁŝƚŚ� Ă� ůŝŵŝƚĞĚ�ŶƵŵďĞƌ�ŽĨ� ƉĂƌĂŵĞƚĞƌƐ� ŝƐ� ĂďůĞ� ƚŽ�
ƌĞƉƌŽĚƵĐĞ�ƚŚĞ�ƉŚĞŶŽŵĞŶŽŶ�ǁŝƚŚŝŶ�Ă�ƌĞƋƵŝƌĞĚ�ůĞǀĞů�ŽĨ�ĂĐĐƵƌĂĐǇ͗�͞ƉĞƌĨĞĐƚŝŽŶ�ŝƐ�ĂĐŚŝĞǀĞĚ�ŶŽƚ�ǁŚĞŶ�ƚŚĞƌĞ�

ϰ



ŝƐ� ŶŽƚŚŝŶŐ�ŵŽƌĞ� ƚŽ� ĂĚĚ͕�ďƵƚ�ǁŚĞŶ� ƚŚĞƌĞ� ŝƐ� ŶŽƚŚŝŶŐ� ůĞĨƚ� ƚŽ� ƚĂŬĞ� ĂǁĂǇϭ͘͟� dŚŝƐ� ǀŝƐŝŽŶ� ŝŵƉůŝĞƐ� Ă�ĚŝĨĨĞƌĞŶƚ�
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ƚŽ�ĐŽŵƉĂƌŝƐŽŶ͕�ďŽƚŚ�ƐƉĂƚŝĂůůǇ�ĂŶĚ�ƚĞŵƉŽƌĂůůǇ͘�WĂƐƚ�ŵŽĚĞůƐ�ĐĂŶ�ďĞ�ƐƚŽƌĞĚ�ĂŶĚ�ƌĞƚƌŝĞǀĞĚ�ǁŚĞŶ�ŶĞĞĚĞĚ͕�
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ŝŶƚĞŶƐŝǀĞ�ƐŽĐŝĂů� ƐĐŝĞŶĐĞ� ƌĞƐĞĂƌĐŚ�ďǇ� ĨŽĐƵƐŝŶŐ�ŽŶ� ŝƚƐ� ƐƚƌĞŶŐƚŚƐ� ƌĂƚŚĞƌ� ƚŚĂŶ�ĂƚƚĞŵƉƚŝŶŐ� ƚŽ�ŽǀĞƌĐŽŵĞ�ƚŚĞ�
ƐƚŽƌĂŐĞ�ďŽƚƚůĞŶĞĐŬƐ�ŽĨ�ůĞŐĂĐǇ�'/^�ƐǇƐƚĞŵƐ͘�dŚĞ�ĨŽĐƵƐ�ŚĞƌĞ�ŝƐ�ŽŶ�ĐŽŵƉƵƚĂƚŝŽŶĂů�ƐŽĐŝĂů�ƐĐŝĞŶĐĞ͕�ĂƐ�ƚŚŝƐ� ŝƐ�
ĂŶ�ĂƌĞĂ�ŽĨ�ƌĞƐĞĂƌĐŚ�ǁŝƚŚ�Ă�ƌŝĐŚ�ŚŝƐƚŽƌǇ�ŽĨ�ŐĞŽŐƌĂƉŚŝĐĂů�ƚŚĞŽƌǇ�ƚŚĂƚ�ĐĂŶ�ďĞ�ƵƚŝůŝƐĞĚ�ƚŽ�ŝŶĨŽƌŵ�ŽƵƌ�ŵŽĚĞůƐ͖�
ŚŽǁĞǀĞƌ͕�Ă�ƉƌŽĐĞƐƐͲďĂƐĞĚ�ĨƌĂŵĞǁŽƌŬ�ŵĂǇ�ĂƉƉůǇ�ĞƋƵĂůůǇ�ǁĞůů�ŝŶ�ŽƚŚĞƌ�'/^ĐŝĞŶĐĞ�ƌĞůĂƚĞĚ�ĨŝĞůĚƐ͕�ŝŶĐůƵĚŝŶŐ�
ŚƵŵĂŶͲĞŶǀŝƌŽŶŵĞŶƚ��ŝŶƚĞƌĂĐƚŝŽŶƐ͕�ƌĞŵŽƚĞͲƐĞŶƐŝŶŐ͕�ĂŶĚ�ĞŶǀŝƌŽŶŵĞŶƚĂů�ŵŽŶŝƚŽƌŝŶŐ͘�/ŶĚĞĞĚ͕�ďǇ�ƌĞƚƵƌŶŝŶŐ�
ƚŚĞ� ĨŽĐƵƐ� ƚŽ� ŵŽĚĞůůŝŶŐ� ĂŶĚ� ƵŶĚĞƌƐƚĂŶĚŝŶŐ� ƵŶĚĞƌůǇŝŶŐ� ƐƉĂƚŝĂů� ƉƌŽĐĞƐƐĞƐ͕� ŽƵƌ� ĨƌĂŵĞǁŽƌŬ� ĨŽƌ� ŵŽĚĞůͲ
ĐĞŶƚƌŝĐ�ĂŶĂůǇƐŝƐ�ƉƌŽǀŝĚĞƐ�Ă�͚ǁĂǇ�ĨŽƌǁĂƌĚ͛�ĨŽƌ�'/^ĐŝĞŶĐĞ�ƌĞƐĞĂƌĐŚ�ŝŶ�ŐĞŶĞƌĂů͕�ƚŚĂƚ�ĞŵƉŚĂƐŝƐĞƐ� ŝŶƚĞůůŝŐĞŶƚ�
ĂŶĂůǇƐŝƐ͕�ĂŶĚ�ƉƌŽǀŝĚĞƐ�ŵŽĚĞůƐ�ĂŶĚ�ƚŽŽůƐ�ƚŽ�ĞĨĨĞĐƚŝǀĞůǇ�ĞǆƉůŽƌĞ͕�ĂŶĂůǇƐĞ͕�ĂŶĚ�ƵŶĚĞƌƐƚĂŶĚ�ĚǇŶĂŵŝĐ�ƐƉĂƚŝĂů�
ƉƌŽĐĞƐƐĞƐ͘�dŚŝƐ�ŝŶƚĞůůŝŐĞŶƚ�ĂŶĂůǇƐŝƐ�ŐŽĞƐ�Ă�ƐƚĞƉ�ĨƵƌƚŚĞƌ�ƚŚĂŶ�ƚŚĞ�ŝŶĐƌĞĂƐŝŶŐůǇ�ĐŽŵŵŽŶ�ƉƌĂĐƚŝĐĞ�ŽĨ�ĐŽŶƚĞǆƚͲ
ĨƌĞĞ� ĚĂƚĂͲĚƌŝǀĞŶ� ŬŶŽǁůĞĚŐĞ� ĚŝƐĐŽǀĞƌǇ� ďǇ� ƚĂŬŝŶŐ� ĂĚǀĂŶƚĂŐĞ� ŽĨ� ĐŽŶƚĞǆƚƵĂů� ŝŶĨŽƌŵĂƚŝŽŶ� ĂŶĚ� ůŝŶŬĞĚ� ĚĂƚĂ�
ƚŽ� ŐĞŶĞƌĂƚĞ� ŵŽĚĞůƐ� ƚŚĂƚ� ŚĞůƉ� ƵƐ� ƚŽ� ƌĞƉƌĞƐĞŶƚ� ĂŶĚ� ĞǆƉůĂŝŶ� ƚŚĞ� ƌĞĂůͲǁŽƌůĚ͘� &ƵƌƚŚĞƌŵŽƌĞ͕� Ă� ƐƚƌĞĂŵŝŶŐ�
'/^ĐŝĞŶĐĞ� ŚĞůƉƐ� ƚŽ� ĂĚĚƌĞƐƐ� ĐŽŶĐĞƌŶƐ� ŽĨ� ƐĐĂůĂďŝůŝƚǇ� ĂŶĚ� ƌĞůĞǀĂŶĐĞ� ĂƐ� ǁĞ�ŵŽǀĞ� ƚŽǁĂƌĚƐ� Ă� ŵŽƌĞ� ĚĂƚĂͲ
ŝŶƚĞŶƐŝǀĞ�ƐĐŝĞŶƚŝĨŝĐ�ƉĂƌĂĚŝŐŵ͘�,ŽǁĞǀĞƌ͕�ŽƵƌ�ĨŽĐƵƐ�ŽŶ�ĐŽŶƚĞǆƚ͕�ƚŚĞŽƌǇ͕�ĂŶĚ��ŝŶƚĞůůŝŐĞŶĐĞ�ŐŽĞƐ�ĚĞĞƉĞƌ�ƚŚĂŶ�
ƐŝŵƉůǇ�Ă�ďĞƚƚĞƌ�ǁĂǇ�ƚŽ�ĚĞĂů�ǁŝƚŚ�ůĂƌŐĞ�ĚĂƚĂƐĞƚƐ͖� ŝƚ�ŵĂǇ�ĂůƐŽ�ŚĞůƉ�ƚŽ�ĂĚĚƌĞƐƐ�ƚŚĞ�ůŽŶŐͲƐƚĂŶĚŝŶŐ�ĐŽŶĐĞƌŶ�
ŽĨ� '/^ĐŝĞŶƚŝƐƚƐ� ƚŚĂƚ� ŽƵƌ� ůĂĐŬ� ŽĨ� ĂŶǇ� ƵŶŝĨǇŝŶŐ� ƚŚĞŽƌŝĞƐ� ŵĂǇ� ƌĞĚƵĐĞ� ŽƵƌ� ĨŝĞůĚ� ƚŽ� ƐĞĐŽŶĚͲĐůĂƐƐ� ƐƚĂƚƵƐ� ŝŶ�
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ƚŚĞ�ĂĐĂĚĞŵŝĐ�ĐŽŵŵƵŶŝƚǇ� ΀ϯ΁͘��ŚĂŶŐŝŶŐ� ƚŚĞ�ƉƌĞǀĂŝůŝŶŐ�ŵŝŶĚƐĞƚ͕�ĂŶĚ� ĨŽĐƵƐŝŶŐ�ŽŶ�ŵŽĚĞůůŝŶŐ� ƌĂƚŚĞƌ� ƚŚĂŶ�
ƐƚŽƌŝŶŐ͕�ŚĂŶĚůŝŶŐ͕�ĂŶĚ�ŵŝŶŝŶŐ�ƐƉĂƚŝĂů�ĚĂƚĂďĂƐĞƐ�ǁŝůů�ƵůƚŝŵĂƚĞůǇ�ĂůůŽǁ�ƌĞƐĞĂƌĐŚĞƌƐ�ƚŽ�ƉůĂǇ�ƚŽ�ƚŚĞ�ĐƵƌƌĞŶƚ�
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Abstract. Semantic technologies and ontologies play an increasing role in sci-
entific workflow systems and knowledge infrastructures. While ontologies are
mostly used for the semantic annotation of metadata, semantic technologies en-
able searching metadata catalogs beyond simple keywords, with some early ev-
idence of semantics used for data translation. However, the next generation of
distributed and interdisciplinary knowledge infrastructures will require capabili-
ties beyond simple subsumption reasoning over subclass relations. In this work,
we report from the EarthCube Semantics Community by highlighting which role
semantics and ontologies should play in the EarthCube knowledge infrastructure.
We target the interested domain scientist and, thus, introduce the value proposi-
tion of semantic technologies in a non-technical language. Finally, we commit
ourselves to some guiding principles for the successful implementation and ap-
plication of semantic technologies and ontologies within EarthCube.

The semantic annotation of data and semantics-enabled search in metadata catalogs are
part of many scientific workflow systems, e.g., Kepler [1]. In the past, semantic tech-
nologies have shown great potential in many biologically-focused cyberinfrastructures
for both data annotation and semantic translation. There is some preliminary evidence
to suggest that similar approaches would also add value in the geosciences, e.g., in the
context of GEON. However, there appears to be some confusion about the role that
? Author names are listed in alphabetic order.



semantics can play within distributed next-generation knowledge infrastructures such
as NSF’s EarthCube1. Indeed, current Semantic technologies require knowledge of for-
mal logic that is unfamiliar to most Earth scientists. There is, however, a simple way
to understand how semantics can contribute greatly to the interoperability [2] of data,
models, and services within EarthCube: simply put, by linking scientific observations
and other data to terms drawn from ontologies or other forms of vocabularies, one can
gain insights from how those terms are linked to other definitions in the ontology. This
all happens behind the scenes. For example, if a scientist has collected observations of
salinity measurements from the sea surface at location X, she can automatically link
the data to terms like: chemical concentrations, oceanographic measurements, mea-
surements (e.g., sea surface temperature) from 0m depth, and correlated measurements
from locations situated near to X – all become accessible through the potential relation-
ships revealed through ontologies. Thus, scientists searching for those general terms are
more likely to find and potentially reuse the data. This capability will be invaluable to
any scientist doing integrative or synthetic research that benefits from finding comple-
mentary data that others (e.g. potential collaborators) might have collected [3]. Even
more, in an interdisciplinary setting the same terms may have di↵erent meanings and
data may be collected and published following di↵erent measurement procedures and
scientific workflows. Ontologies help to make such hidden heterogeneities explicit and,
thus, support scientists in understanding whether a certain dataset fits their models [4].
Finally, to a certain degree, ontologies can also automatically translate data to make
them interoperable and also reveal di↵erences in the used classification systems [5].

If EarthCube promotes common vocabularies for annotating and describing data
using terms drawn from ontologies, the value added will far exceed what can be ex-
pected from annotation using simple metadata, or worse, annotation using completely
uncontrolled and not structured vocabularies. All the formal semantic processing and
reasoning will be automatically accomplished behind the scenes for the scientists, in
the same way that a Web browser nicely renders a page for a human to read. As a
research community, we need to learn to be flexible, to develop techniques for harden-
ing ontologies from looser semantics, to infer connections to more formal semantics,
more generally to start with what is available whilst encouraging the development of
more formal semantics where it is practical to do so. Google, Apple, the New York
Times and Best Buy all use ontologies to support their content management systems
or for other purposes related to sharing and managing of data. Thus, we believe that
EarthCube should use semantic technologies as well. A key benefit of adopting Seman-
tic technologies is that a vast number of repositories, ontologies, methods, standards,
and tools that support scientists in publishing, sharing, and discovering data, is already
available.

Semantic technologies provide new capabilities for formally and logically describ-
ing scientific facts and processes that may be as transformative as the introduction of
the relational model was for organizing and accessing data over the past three decades.
While a number of exciting semantic technology developments are underway, perhaps
the area with greatest immediate applicability to EarthCube is the Semantic Web. The
Semantic Web is a research field that studies how to foster the publishing, sharing, dis-

1 See http://www.nsf.gov/geo/earthcube/ and the community page at http://earthcube.ning.com/ .



covery, reuse, and integration of data and services in heterogeneous, cross-domain, and
large-scale infrastructures. It consists of two major components.

(i) Ontologies and knowledge representation languages that restrict the interpreta-
tion of domain vocabulary towards their intended meaning and, thus, allow us to con-
ceptually specify scientific workflows, procedures, models, and data, i.e., the body of
knowledge in a given domain, in a way that reduces the likelihood of misunderstanding
and fosters retrieval and reuse [6].

(ii) As these ontologies are formal theories, they enable reasoning services on top of
them. These reasoning services assist at di↵erent stages. They ensure that the developed
ontologies are consistent. They help to make implicit knowledge explicit, discover in-
compatibilities and, thus, prevent users from combining data, models and tools that were
developed with di↵erent underlying assumptions in mind. They allow querying across
di↵erent sources and the semi-automatic alignment of di↵erent ontologies to foster the
reuse and integration of data, models, and services. And finally, they support the design
of smart user interfaces that go beyond simple keyword search and improve accuracy
in search, cross-domain discovery, and other tasks which require data and information
integration.

Linked Data is the data infrastructure of the Semantic Web [7]. It has rapidly grown
over the last years and has found substantial uptake in industry and academia, since
it significantly lowers the barrier for publishing, sharing, and reuse of data. Linked
Data is an easily adoptable and ready-to-use paradigm that enables data integration
and interoperation by opening up data silos. Combining Semantic Web technologies
and Linked Data with ontologies also enables the discovery of new knowledge and the
testing of scientific hypotheses. Consequently, the Semantic Web allows for vertical
and horizontal integration, which is of central importance for EarthCube in order to
realize the required interoperability of data, models, and tools while preserving the
heterogeneity that drives the motor of interdisciplinary science.

However, the use of semantic technologies and ontologies in itself does not auto-
matically guarantee interoperability or better access to data if not supported by a clear
roadmap and guiding principles. The following list reflects a minimal set of principles
that should guide the community for the next years. For EarthCube to be successful and
transformative, we propose the following lines of action:

1. Be driven by concrete use cases and needs of the members of the EarthCube com-
munity. Collect, at the outset, a set of use cases from each EarthCube group, and
conduct a substantial study of interconnected use cases which expose requirements
related to data, models, and tools interoperability. These requirements need to be
thoroughly analyzed as to the requirements they impose on the EarthCube data,
ontology, and semantics infrastructure.

2. The choice of methods and the degree of knowledge formalization, e.g., lightweight
versus heavyweight approaches, should be chosen based on use cases and applica-
tion needs. This reduces the entry barrier for domain scientists to contribute data
and ensures that a semantics-driven infrastructure is available for use in early stages
of EarthCube.

3. Foster semantic interoperability without restricting the semantic heterogeneity in-
troduced by the diverse community representing EarthCube. Provide methods that



enable users to flexibly load and combine di↵erent ontologies instead of hard-
wiring data to particular ontologies and, thus, hinder their flexible reusability.

4. Allow for bottom-up and top-down approaches to semantics to ensure a vertical
integration from the observations-based data level up to the theory-driven formal-
ization of key domain facts.

5. Involve domain experts in ontology engineering and enable them to become active
participants by providing building blocks, strategies, documentations, and work-
shops on how to publish, retrieve, and integrate data, models, and workflows.

6. Apply semantics and ontologies to capture the body of knowledge in various Earth
science domains for the purpose of organizing and accessing data, models and tools,
learning about them, and extracting information from legacy data.

7. Exploit the power of classical and non-classical reasoning services to develop user
interfaces, dialog systems and service chains that assist domain scientists at di↵er-
ent stages ranging from discovering data and integrity constraint checking to the
generation of new knowledge and hypothesis testing.

A detailed, more technical argumentation why these points need to be realized and
how the heterogeneity of the geosciences requires new directions of research beyond
schema standardization, can be found in the report of the Semantics and Ontology Tech-
nical Committee Report [8].
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Abstract: Address is one of the most commonly used spatial data in everyday life. Comparing two 
addresses (e.g., if they are referring to the same location) is a fundamental problem for address-related 
record linkage. In this paper, a fast, reliable, expandable address parser/standardizer/geocoder has been 
developed as an initial step towards spatial record linkage. First, a CASS-based geocoding test set was 
created and performance of on-line geocoding API providers (Google, Yahoo, Bing) was evaluated. 
Considering high time consumption and geocoding precision flaws, we developed an in-house 
TIGER/Line based hierarchical geocoder, Intelius Address Parser (IAP) that provides on-par geocoding 
precision compared to on-line geocoding APIs. Given over one billion addresses, on a 25-node Hadoop 
cluster setup on with Amazon AWS, the time consumption and cost are reported and compared with 
commercial solutions. Strategies for using geocoded addresses for record linkage is presented and plans on 
expanding the use of geocoded result are discussed.    
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1. Introduction 
Spatial record linkage describes the process of comparing two or more records based on the 
spatial footprints (e.g., addresses, spatial coordinates, political region, etc.) from each record. 
One of, if not the most commonly used spatial footprint is postal addresses, in forms of “123 
Main ST, Unit A, Springfield, MA 01108” (U.S. addresses is the focus of this paper). 
Parsing, standardizing, and geocoding postal addresses for the purpose of spatial record 
linkage have attracted wide research attention in inter-disciplinary fields such as health 
science (Churches et al., 2002, Cayo & Talbot, 2003, Christen & Churches, 2005). The 
motivation of address geocoding in this paper comes directly from the demand to support 
people search, which aims at returning individuals by query such as name and location. From 
a people search perspective, many records (such as bill payments) were anchored to a person 
by a name and an address; given that there are many person sharing the same name (e.g., 
there are over 500 “Jim Smith” in the State of California1), using a combination of name and 
address to differentiate records is one of the fundamental techniques for reliable record 
linkage (Elmagarmid et al., 2007) using people data.  

Geocoding describes the process of converting text-based postal address data into digital 
geographic coordinate (Boscoe, 2007), specifically latitude and longitude (lat/lon). The 
following challenges make geocoding a quintessential pre-requisite for spatial record linkage:  

1. Addresses can be written in flexible ways. 500 108th Ave NE, Bellevue, WA 98004 
maybe written as 500 108 Avenue NorthEast, Bellevue, WA. The latter address has 
non-standard street post-directions (NorthEast), street name (108) and type (Avenue), 
and is missing zipcode (98004), yet human can still comprehend it is referring to the 
same location as the former standard address. Although USPS has a very specific 
standard on address format (United States Postal Service, 2012), due to the flexible 
nature of human language, it still very common to see non-standard addresses being 

                                                 
1 Based on data from Intelius.com, as of June, 2012. 



published and used in everyday life. Because of this flexibility, same address could be 
represented in completely different written forms; As a result, comparing two 
addresses requires more complicated procedure than string comparison. 

2. Address standardization could be the solution to the above challenge. However, 
dictionary-based standardization is not sufficient; a complete street database is 
required to achieve reliable address standardization. Dictionary-based standardization 
is a common method in natural language processing for normalizing certain language 
flexibility. Street Type, for example, can be standardized based on a dictionary (e.g., 
Avenue, Ave., Av should all be standardized as Ave when the string is recognized as a 
Street Type, according to the USPS address standard). This kind of irregularity, 
known as Lexical Heterogeneity, is a common problem in NLP and there is a variety 
of approaches to tackle it (see (Elmagarmid et al., 2007). However, address 
standardization requires spatial knowledge to be able to fix errors in the input. Take 
street type as an example, if 108TH ST is not found for the region specified but 
108TH PL can be found, it’s highly likely that the input is referring to the latter. 
Another common example is addresses that are missing the correct Pre-directional 
terms or Post-directional terms. Spatial databases are required in order for spatial 
record linkage system to be tolerant enough for these mistakes and make corrections 
based on potential possible matches to the real-world streets name. 

3. Geocoding will allow more complex functions in spatial record linkage. Comparing 
two addresses and tell if they are referring to the same address is basic; more complex 
functions like “getting the distance between two addresses” (Tobler, 1970), “tell if 
they are located in the same zipcode/city/CBSA/State” (see Section 3.1), and “get the 
census statistics about the region of an address”. Such derived potential “neighbour 
relationship”, “located in the same zipcode/city/CBSA/State” and “located regions 
that share the same population/income level” can be very useful in conflating people 
data, which would require address data to be geocoded. 

A variety of data source for address geocoding has been used for developing existing 
geocoding services, including building centroids, parcel geometries, street segments, and 
centroids for USPS ZIP codes, cities, counties, and states (Goldberg & Cockburn, 2010).  
Due to the fact that most fine-scale spatial databases (e.g., building centroids, parcel, and 
street segments) are incomplete, most geocoding services in place (Google Inc., 2012, 
Microsoft Corporation, 2012, Yahoo! Inc., 2012) use a combination of the data sources 
mentioned above. As a result, the precision of the geocoded results varies depends on which 
data source is available for the input address. Geocoding precision has been pointed out to be 
a very important component in interpreting the geocoded coordinates (Goldberg, 2011a). The 
hierarchical geocoding strategy of modern geocoders was adopted in developing our in-
house address parser, standardizer and geocoder: Intelius Address Parser (IAP). 

In this paper, the development of a CASS-based geocoding test set and evaluation of 
three commonly used geocoding API (Bing, Google and Yahoo!) is presented in Section 2. 
Upon realizing the high time consumption of using web API, the methods we used in 
developing a TIGER/Line based geocoder (IAP) aiming at geocoding Big Data was presented 
in Section 3. In Section 4, we present the process of setting up a Hadoop cluster on Amazon 
Web Service (AWS) and report the cost for geocoding over one billion addresses. Discussion 
and future development was presented in Section 5. 

2. Evaluation of Existing Geocoders 
Geocoding a few addresses can be easily achieved by calling one of the online geocoding 
APIs. Bing, Google, and Yahoo! all provide free and commercial geocoding services. The 
quality of the result from each geocoder, however, is self-defined representations without a 



unified standard. This means it is not straightforward to compare the geocoding results from 
multiple geocoders (Goldberg, 2011b). A summarization for the different geocoding 
precision/quality was presented in Section 2.1. 

Another challenge is there has not been a publicly freely available geocoding test set at 
large scale. Because of the flexibility in address format, a large test set would be helpful for 
developing a geocoder that is tolerant enough for different kinds of irregularities. To this end, 
we adopted the Stage 1 test set for CASS (150,000 address pairs, in non-standard format and 
USPS standardized format) as our test set. Coding Accuracy Support System, known as 
CASS (United States Postal Service, 2008), is a system of tests for ensuring the quality of 
software that correct and matches postal addresses. We put the 150,000 non-standard format 
addresses to online geocoding APIs and record the geocoded result (returned lat/lon pairs and 
corresponding quality), and then compared with the geocoded result from IAP (see Figure 2). 

2.1 Summary of geocoding API from Bing, Google and Yahoo 
We chose three of the most popular geocoding web services, from Bing, Google and Yahoo! 
for this evaluation. Although they can all function as a general purpose geocoder, they vary at 
technical details from data source to their self-defined geocoding precisions. Table 1 provides 
an overview of the differences among the three online geocoding services. Note that there is a 
daily cap for the number of geocoding calls you can make within a day if you are using a free 
account (Bing) or from the same IP (Google and Yahoo!). In order to make the precision 
comparable, the different precision defined from each provider was summarized into three 
simple categories: street level or better, region centroid (zip, city/state), or unknown 
(color coded as green, blue and red, refer to Figure 2). This generalized geocoding precision 
was used in comparing the three online geocoders versus IAP. 

Table 1. Comparison of features of online geocoding APIs (February, 2012) 

 Bing Geocode Service Google Geocoding API Yahoo! PlaceFinder 
Example 
API call  

http://dev.virtualearth.
net/REST/v1/Location
s/US/WA/98004/belle
vue/500+108th+ave+n
e?key=[APIkey] 

http://maps.googleapis.
com/maps/api/geocode/
xml?address=500+108t
h+ave+ne,+bellevue+w
a+98004&sensor=true 

http://where.yahooapis.co
m/geocode?q=500+108th
+ave+ne,+bellevue,+wa+
98004 

Data Source TeleAtlas, Navteq,  
Map Data Sciences  
(Pendleton, 2008)  

Internal street networks 
(Lookingbill, 2009) 

Navteq  
(Yahoo! Inc., 2012) 
 

Daily Cap 30,000 per API Key 2,500 per IP 50,000 per IP 
Commercial 
license cost 

$8000 per 1,000,000 
transaction (Hansen, 
2009) 

$10,000 per year 
(Google, 2012); daily 
API call limit raise to 
100,000 

Commercial service not 
yet provided as of August 
2012. 

Key 
required 

Yes Optional Optional 

Return 
format 

JSON/XML JSON/XML XML/JSON/Serialized 
PHP/ 

Geocoding 
Precision 

Parcel, 
Interpolation, 
Rooftop,  
InterpolationOffset 
Null 

Rooftop, 
Geometric_Center, 
Range_Interpolated, 
Approximate,  
Zero_Results 

99, 90, 87, 86, 85, 84, 82, 
80, 75, 74, 72, 71, 70, 64, 
63, 62, 60, 59, 50, 49, 40, 
39, 30, 29, 20, 19, 10, 9, 0



Addition 
functions 

Reverse Geocoding 
Return bounding box 
Return Type 
 

Reverse Geocoding 
Return Type  
(e.g., locality, political) 
Viewport Biasing, 
Region Biasing, 

Reverse Geocoding 
Return time zone and 
telephone area code 
Return in other language 
(French) 
Allow POI name as input 

2.2 Lesson learned from the evaluation 
The above geocoding APIs have one huge caveat when it comes to Big Data processing: the 
time consumption is too high due to that the request and reply were sent through the internet. 
In other words, the communication overhead of calling web API is high. If the average 
duration for making geocoding calls and receiving the geocoded results is 0.1 sec, geocoding 
one billion addresses will take over 1,000 days on one machine. With the daily cap (for free 
public API usages), the time consumption will be much higher.  

More importantly, we also found the existing geocoding APIs are far from perfect in 
dealing with messy addresses (some of the non-standard addresses can be very tricky to parse 
and standardize). Because before geocoding, there needs to be address parsing and address 
standardization, which is quite prone to errors due to flexible address format.  The following 
types of addresses have been found frequently causing the online geocoders to fail: 

1. Non-residential addresses, including PO Box (e.g., PO Box 123, Springfield, OR 97477), 
Rural Route Boxes (e.g., RR 2, Box 12, Springfield, IL), General Delivery and Military 
mail (e.g., John Jackson, Unit 123, Box 456, APO AE 09001). Non-residential addresses 
represent only a Postal Box for receiving mail (such as at a postal office), so it is 
important to understand that the geocoding precision for non-residential type addresses is 
limited (e.g., PO Box addresses can only be best geocoded to zipcode level). Specifically, 
they are missing street and house number, which a lot of the times are the reason for the 
incorrectly parsing. Take PO Box type address as an example, the PO Box number gets 
dropped (Google) or mistaken for House Number or POI Name (Yahoo, Bing). The 
online geocoders do not differentiate non-residential addresses from residential addresses, 
which is the main cause for the observed error. This problem is addressed in IAP.  

2. Non-English addresses. Although we are focusing on U.S. addresses, there still exists 
street names that are in languages other than English (majority of these cases in the US is 
in Spanish). The challenge lies in that the sequence of Pre-directional term, Street Name, 
Street Type, Post-directional term would be different due to different language patterns. 
Washington Ave (i.e., Washington Avenue) in English would become Av Washington in 
Spanish (i.e., Avenida Washington, real street name in San Juan, Puerto Rico). This 
reverse sequence would require a different parsing mechanism; in IAP, we use a different 
set of RegExs for when the StreetType is recognized as non-English.  

3. General parsing errors: Yahoo!’s geocoding service, at quality below 84 (Yahoo!’s 
quality representation, equivalent to region-centroid level precision), contains a lot of 
cases where the lat/lon returned was outside of U.S. Many PR (Puerto Rico) addresses 
was geocoded to Europe (could be the error from the language issue). Some well 
formatted address are also geocoded wrong2. 

Given the above concern on speed and precision, we concluded that developing an in-
house address geocoder is required for processing Big Data. 
                                                 
2 The errors are found as of Jun 18th, 2012 from Yahoo!’s PlaceFinder API (which was released in June 2010). 
Examples:  
http://where.yahooapis.com/geocode?q=91+ROSELAND+AVE+#+601,+CALDWELL+NJ+07006: one valid 
address in New Jersey results in lat/lon pairs in Russia from the PlaceFinder API. 



3. Intelius Address Parser 
The address data in Intelius is at a very large data scale and varies in data quality. Intelius 
Address Parser (IAP) is designed to be highly tolerant of noisy data, fast, can deliver reliable 
geocoding precision, and customizable for complex spatial record linkage demands. IAP is 
designed based on an open-source project JGeocoder (JGeocoder, 2008), which was further 
developed and customized based on the different cases identified from the above evaluation. 
The design of IAP is presented in Section 3.1 and evaluation of IAP’s performance compared 
to the three on-line geocoding API is presented in Section 3.2. 

3.1 IAP Design 
IAP segments the task of geocoding into three consecutive steps: parsing, standardization 
and geocoding. Each step produces an intermediate output, which was used for the next step. 
IAP uses the TIGER/Line database (The US Census Bureau, 2011) and a zipcode/city name 
database (federalgovernmentzipcodes.us, 2012). The workflow is shown in Figure 1: 

Parsing: The input full-address string is segmented into Address Components using a 
library of Regular Expressions and rule-sets in the parsing stage. Address Components consist 
of POIName, HouseNumber, PreDir, StreetName, StreetType, PostDir, Line2, City, State, 
and Zip (JGeocoder, 2008). When the input address is recognized as non-residential type 
addresses (PO Box, Rurul Route, General Delivery, and Military), corresponding tags are put 
in the geocoding precision field for further processing. 

Standardization: Each parsed Address Component goes through a standardization 
process where a rule set developed following USPS postal address standard are applied 
(United States Postal Service, 2012). For example, StreetType Avenue will be changed into 
AVE, PostDir NorthWest will be changed to NW. When zipcode is present, the city and state 
name will be fixed for spelling mistakes using Levenshtein distance to match to the zip-city 
name database (e.g., change Bellevua, WA into Bellevue, WA). Moreover, a vanity city name 
(referring to the alternative of a city name) database is used to fix non-standard city names. 
For example, City Hollywood will be changed to Los Angeles; City Manhattan will be 
changed to New York City.  

Geocoding: When recognized as residential address, the standardized Address 
Components will be used for construct SQL query for TIGER/Line address range database 
(refer to (Goldberg & Cockburn, 2010) for details on using address range for geocoding). 
Here, Zip, StreetType, PreDir and PostDir will be fixed if the standardized result contains 
errors or missing components from the input. If the address range can be found for the given 
street name, find the closest address range for the input HouseNumber and return imputed 
lat/lon pairs and put Street-level in Precision. Otherwise, return lat/lon of region centroid for 
zipcode or city. Additional infomation (County and CBSA) are also returned.  



 
Figure 1. Workflow of the Intelius Address Parser (IAP). Red represents modification from 
original input. 

A few design features from IAP are explained in detail below: 
1. IAP differentiates non-residential address and residential address at the parsing stage. 

Non-residential address will not make call to TIGER/Line database (because they miss 
HouseNumber and Street), which saves time. Also, Precision field is used to deliver 
address type information. Non-residential address types will be reflected in the precision 
field. This feature is particularly useful in address comparison.  

2. IAP allows flexible input. The input can be a simple string, which means addresses that 
are organized differently from different data source can be parsed and standardized into 
the same format. Also, most Address Components can be missing yet IAP can still deliver 
geocoded result. An address can be missing HouseNumber, PreDir, PostDir, Zip and still 
be parsed, standardized, and geocoded correctly. Even if the input consists only of city 
name and state, IAP can still deliver lat/lon of on the city centroid, thanks to the 
hierarchical geocoding strategy.  

3. IAP delivers additional information other than lat/lon for addresses. County and CBSA 
(Core Based Statistical Areas, obtained from (United States Office of Management and 
Budget, 2009) are regions that inexplicitly associated with an address. They are larger 
than Zip and smaller than a State, which can be useful for spatial record linkage. 

3.2 Performance of IAP against online geocoding APIs 
We put IAP to the CASS Stage 1 test and compared the performance with online geocoding 
APIs. Because online geocoding APIs does not return non-residential address types, this 
comparison only reflects coarse granularity of returned lat/lon pairs. As shown in Figure 2, 
IAP provides on-par precision compared to the three online geocoding APIs. 

 



 
Figure 2. Summarized geocoding performance from Bing, Google, Yahoo and IAP on the 
CASS Stage 1 test set (150,000 addresses) 

However, of the CASS test set, which consists only of US addresses (except for certain 
overseas military addresses), Yahoo!’s PlaceFinder returns more than 7,800 lat/lon that are 
located outside of U.S., presenting a potential bug in parsing. Since this evaluation relies on 
the reported geocoding precision, it is difficult to judge how precise the geocoded lat/lon 
pairs actually are. A golden set of geocoded addresses and corresponding lat/lon pairs are 
required for further evaluation, which is discussed in Section 5. 

4. Geocoding Billions of Addresses 
To experiment geocoding Big Data with IAP, we leverage some of the current Big Data 
processing tools and report the procedure of how over one billion addresses was geocoded. 
Hadoop, a free implementation of MapReduce (Dean & Ghemawat, 2004) has become the de 
facto industrial standard framework for Big Data processing. Amazon Web Service (AWS) is 
also becoming more and more popular as a quick, inexpensive, and disposable way of setting 
up a computing cluster. We deploy a 25-node Hadoop cluster on AWS for this experiment. 



 
Figure 3. Workflow for running IAP on AWS. 

Setting-up AWS for this IAP experiment requires two types of instances, EC2 (Elastic 
Computing Cloud) for high capacity computing CPUs and EBS (Elastic Block Storage) for 
storing the required spatial databases (TIGER/Line and zipcode database, approximately 
17GB as MySQL databases). Java and MySQL comes pre-configured in AMI (Amazon 
Machine Image) for EC2; once the spatial DBs gets uploaded to 1 EBS instance, the EBS 
instance gets mounted to 1 EC2 instance; this EC2+EBS image are then snapshotted then 
copied into as many instances as needed. For this procedure, we setup a 25 nodes High-CPU 
Extra Large EC2 cluster.  

Because address data is usually part of a general data model, to reduce cost of data 
transfer, we first prepare the input data for geocoding by extracting addresses as strings and 
assign unique ID to each record. Then we use string-based string comparison to deduplicate 
apparent redundant addresses. After this we have over one billion addresses ready for 
geocode. Running IAP over one billion addresses on a 25 nodes High-CPU Extra Large 
cluster takes about 38 hours. The cost of this geocoding process (High-CPU Extra Large 
instances cost $0.66/hour/instance) is $627; considering the time consumption of setup and 
data transfer, the overall cost should be under $8003, which would be drastically less than the 
cost of using any of the commercial services (see Table 1). 

5. Discussion and Future Work 
Admittedly, the evaluation of the four geocoders is limited. Because CASS test set only 
provides addresses (non-standard and standard), we can only rely on the precision (or quality) 
field provided by the geocoder to tell if the result is good or bad (because we do not have the 
true and precise lat/lon for each of the 150,000 addresses). However, based on hand-
                                                 
3 All cost estimates in this paper were obtained in May 2012. 



examination of geocoding result from Yahoo!, we found the returned lat/lon to be not as 
precise as the precision field indicates. This calls for a golden set consisting of addresses and 
their corresponding verified lat/lon for evaluating geocoders. Crowdsourcing method could 
be leveraged to build such a golden set, where human participants manually check the lat/lon 
of an address and popular the golden set with the best precision.  

Another drawback of the evaluation is that due to the mismatch of the precisions used in 
different geocoders, the summarized categories can only be general and coarse in granularity. 
It is possible that on-line geocoders like Google may offer finer-than-street-level precision 
(e.g., building centroid) on certain addresses, which are not credit for in this evaluation. 
Different kinds of spatial databases may complement each other, which urge IAP to include 
other types of spatial databases to offer finer and more comprehensive geocoding. 

The limitations of making web API call (communication overhead, daily cap) compared 
to local database lookup shows its significance when it comes to Big Data processing. The 
time consumption for getting geocoded result for the 150,000 addresses ranges from four 
days (Yahoo! PlaceFinder) to two months (Google Geocoding API). In the case of Google, 
even with a $10k per year commercial API (daily limit raised to 100,000), geocoding one 
billion unique addresses will take 10,000 days (more than 27 years, costing over $270k). 

From developing IAP through examining messy addresses, we learned that high tolerance 
for address parsing is crucial to achieve reliable geocoding result. Non-residential type 
addresses and addresses with missing components all needs to be considered to achieve a 
robust geocoding service.  

Geocoders may not be limited to provide lat/lon pairs and precision; to better serve as a 
foundation for spatial record linkage, providing additional spatial data, such as county and 
CBSA, can be helpful for making address comparisons. U.S. Census data for different 
regions can be used to derive further linkages between two locations. For example, whether 
two addresses comes from county with similar population level and income. This additional 
information would particularly be useful for linking people data, which will be developed for 
the next version of IAP. 

Finally, we recognize the benefit of using AWS for Big Data computing. First, building a 
high-capacity computing cluster using AWS is fast, easy and cheap. What used to take 
months on buying hardware, configuring OS and software now takes minutes on AWS. The 
cost for geocoding billions of addresses is much lower comparing to other commercial 
offerings. Another advantage for using AWS is data security. Sending data to commercial 
service providers increases the risk of data exposure, which would be a big concern for 
sensitive data. Computing on AWS, however, uses disposable instances where after 
computing, the instances can be destroyed. On the other hand, because AWS is charged by 
use time, the instances should be destroyed to save cost. For example, the AWS cluster used 
for this geocoding experiment was only alive for less than a week. This disposable setup 
reduces data exposure in the cloud to the minimal. 

In sum, our evaluation of 150,000 addresses shows current on-line geocoding API is still 
lacking with regard to speed and precision. With an in-house geocoder IAP, we experimented 
on geocoding over one billion addresses, which take 38 hours and cost less than $800 on a 25 
nodes high-CPU cluster on AWS.  
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Abstract. This study examines categorical and spatial patterns for trending 
venues in three cities. The three cities in our experiment are New York City, 
NY, Pittsburgh, PA and Erie, PA. We examine common categories of venues 
that trend in our test cities and see a similar theme in each city favoring food-
based venues, nightlife venues and other venues. We map the venues in each 
city and perform a nearest neighbor analysis to identify any spatial clustering in 
the datasets. We find that trending venues in New York City and Pittsburgh ex-
hibit clustering while the trending venues in Erie are more dispersed. 

1 Introduction 

     This study is an extension of a previous work done on Foursquare and trending 
(Robles and Benner, 2012) that focused on comparing the temporal trends in three 
distinct cities.  The previous work briefly examined categories and trending, but only 
in terms of what categories of venues trended the most often.  This work focuses on 
the categories and spatial pattern of trending venues in three cities.  The broader goal 
of our work is to begin to understand the trending feature on Foursquare in general 
and its use. 

   Foursquare is a popular location-based social network (LBSN) boasting 20 mil-
lion members and nearly one million businesses using the service plus the collection 
of 2.5 billion check-ins since its release in 2009 (Foursquare, 2012a). Some research-
ers  try  to  discern  patterns  of  use  in  Foursquare  from  the  individual  user’s  perspective  
to make social link predictions (Scellato et al. 2011) or understand the location-
sharing patterns of users (Cramer et al. 2011). On the contrary, the trending feature on 
Foursquare offers global insights into the most popular venues in a city and when they 
are most visited. This kind of information is useful to both researchers interested in 
urban analytics and Foursquare venue owners. For example, an urban analyst could 
create an application to collect real-time trending data from Foursquare and share 
visualizations of currently trending venues in a city and other interpretations of the 
data. Then, a Foursquare venue owner in the same city could use this resource to 
monitor their own venue and similar venues with the aim to improve their business. 

In order for this kind of collection, sharing and use of trending data to be realized 
methods for retrieving, filtering, storing, integrating, and sharing large datasets of 



check-in data are needed. A first step in this process is to gain a basic understanding 
of the phenomenon of trending and the structure of trending data. The aim of this 
paper is to investigate the spatial distribution of trending venues in general and specif-
ic categories of venues.  

2 Background and Related Work 

2.1 Location Based Social Networks 

     Location Based Social Networks, or LBSNs, are social networks similar to Face-
book or Twitter, but with a location component.  The LBSN we chose for our study is 
Foursquare.  The main purpose of Foursquare is to share where you are in the form of 
‘check-ins’   via   a   free   downloaded   mobile   phone   application   available from Four-
square.     Users  are  able  to  ‘check-in’  to  any  venue  currently  listed  on  Foursquare,  or  
they can make their own.    

2.2 Trending 

     In  addition  to  ‘checking  in’  at  venues,  and seeing the locations of friends, users are 
able to explore Foursquare   to   see  which   venues   around   their   location   are   ‘trending  
now.’     Venues that are ‘trending   now’   are  venues   near   the user that currently have 
several other people checked in at them. To date, little is known about this new fea-
ture  yet  ‘trending’  may provide a filter to extract the most important venues in a city 
at certain times from large check-in datasets.  

2.3 Related Work 

      In our previous paper (Robles and Benner, 2012), we show commonly trending 
venues in all three cities are food-based venues, nightlife venues, and venues not well 
represented by the common categories used to study Foursquare (referred  to  as  ‘oth-
er’).  Examples  of  ‘other’  venues  are  doctor’s  offices,  work  offices,  hotels  and  hospi-
tals. Overall, food based venues dominated in New York City while nightlife venues 
(i.e., bars) dominated both Pittsburgh and Erie.  
    Lindqvist et al. (2011) conduct a survey-based study with users of Foursquare to 
discover motivations for checking-in on Foursquare. Participants of the study share a 
variety of reasons for deciding to check-in or not including: letting others know where 
you are, finding out where others are, game playing to collect  badges or points, be-
coming the ‘mayor’  of  a  venue for  all  friends  to  see,  and  presenting  a  ‘self’  to  others  
through the locations they choose to check-in.  Understanding why people choose to 
check-in or not has value for attaching meaning to venues on Foursquare and deter-
mining why certain categories of venues trend.  For example, does the meaning of a 
venue to certain groups of users impact the number of check-ins and its likelihood of 
trending? 



   Finally, a new project from Carnegie Mellon University called  the Livehoods 
project (Cranshaw, 2012) uses machine learning clustering techniques to re-define 
city neighborhoods by pattern of use on Foursquare as opposed to the traditional 
neighborhood that are politically defined. Livehoods clusters represent groups of 
check-ins by similar users. The Livehoods project offers a new expression of check-in 
data and combines the characteristics of users to find undiscovered pockets of activity 
in cities. 

3 Experimental Design 

    This  study  obtained  data  for  venues  that  are  ‘trending  now’  using  the  publicly  
available Foursquare API. Specifically, we retrieved data from the Trending Venues 
endpoint and when necessary the Venues endpoint over 25 consecutive days.  The 
Trending Venues endpoint gave us a list of the venues that were trending during each 
hour we sent the request coupled with the category of the venue and the time stamp.  
We then plotted the trending venues on a map using their latitude and longitude and 
symbolized the venues using the number of times trended (sum over 25 days) and the 
category. Table 1 shows the three different  city  ‘types,’  extra large, mid-sized, or 
small, we selected for the same region in the USA.  We also took into account the 
total  population  of  the  city  when  assigning  the  city  ‘type’ city populations as reported 
in the 2010 US Census, are shown in Table 1 below.  

Table 1. City description with population for cities in study 

City Name, State City Type Population 
New York, NY Extra Large 8,175,133 
Pittsburgh, PA Mid-Sized 305,704 
Erie, PA Small 101,786 

 
After choosing which cities we would use for our experiment, we then had to 

choose which latitude and longitude coordinates to give the API.  The Trending Ven-
ues endpoint of Foursquare API needs an exact set of latitude and longitude coordi-
nates to know where to get the list of trending venues.  To choose a standardized set 
for each city, we decided to use the latitude and longitude coordinates from each 
city’s  Wikipedia  page.    This  is  different  from  a  user  getting the list of trending venues 
from their phone because their physical location is what provides the latitude and 
longitude coordinates to Foursquare. After collecting trending venues hourly for the 
25 day period, we had over 10,000 trending events for the three cities. Table 2 shows 
the number of trending events (i.e., records in the database) and the unique venues for 
each city. Finally, we used the spatial software, ArcGIS (version 9.2), to conduct a 
nearest neighbor analysis in each city. The nearest neighbor calculation assumes the 
data is randomly distributed and results in a nearest neighbor ratio value and a corre-
sponding z value for each set of features. 

 



Table 2. Data collection 

City Trending Events Unique Venues 
New York City 9,447 843 

Pittsburgh 1,178 149 
Erie 275 32 

 

4 Results 

   First we calculated a set of summary statistics for the number of times unique ven-
ues in each city trended over the 25 days of our study. Table 3 shows the summary 
including the average number of times a venue trended, the percent above and below 
the average value and the standard deviation. New York City has the highest average 
value, 11.21 times trending and Pittsburgh has the lowest average value, 7.91. This is 
expected for New York since it is the largest of the three test cities in terms of people 
and the number of venues. All cities show a similar pattern for the percent of data 
above and below the average in which most venues trended below the average num-
ber of times. Finally, the measures of spread for each city show that the distribution 
for New York City is more dispersed than the other two cities while the distribution of 
trending in Erie forms a curve that is closer to the average.     
 

Table 3. Summary Statistics for Times Trending in three cities 
Summary Statistics, timesTrending 

 Avg timesT % Above Avg % Below Avg SD 
NYC 11.21 0.21 0.79 23.06 
PGH 7.91 0.26 0.74 15.26 
ERIE 8.59 0.34 0.66 9.01 

 
Next, we mapped the trending data for each city and symbolized the data using shape, 
color and size. The shape and color of an icon in the map depicts the category of a 
venue while the size of the icon corresponds to the number of times a unique venue 
trended during our study period and the larger the icon, the more times a venue trend-
ed. Figure 1 illustrates the data collected for New York City, Figure 2 Pittsburgh and 
Figure 3, Erie.  
 



 
Fig. 1. Trending venues with categories in New York City, NY 

 
Fig. 2. Trending venues with categories in Pittsburgh, PA 



 
Fig. 3. Trending venues with categories in Erie, PA 

Finally, a nearest neighbor analysis was performed using the three datasets. The re-
sults are presented in Table 4. The observed mean distance is the average distance 
between the points in the dataset. The expected mean distance is an expected value for 
the average distance between points in a dataset based on a random distribution. We 
observe from Table 4 that the observed and expected mean distances for both New 
York City and Erie are fairly close to one another but the observed mean distance for 
Pittsburgh is much lower than the expected distance.  

     
Table 4. Nearest Neighbor Analysis for Three Cities 

City Observed Mean 
Dist (m) 

Expected Mean 
Dist (m) 

NN Ratio Z Score 

NYC 35.6 57.9 0.615 -21.25  
PGH 76.4 132.8 0.575 -9.925  
ERIE 122.1 128.8 0.948 -0.57  
 
The nearest neighbor ratio is the ratio of observed mean distance divided by ex-

pected mean distance. This ratio is interpreted by values lower than 1 considered as 
clustered datasets and values above 1 considered as dispersed datasets. The nearest 
neighbor ratios for the three cities all fall below 1 with Pittsburgh having the most 
clustered result, 0.575, and Erie a more dispersed value, 0.948, fairly close to 1. A Z-
score is a score of statistical significance indicated in measures of standard deviation. 
For this measurement, we begin with the null hypothesis that the datasets are random-
ly distributed through space. We select a 95% confidence interval in which we would 
reject the null hypothesis if the z-score lies between -1.96 and 1.96. Given the results 
for both New York City and Pittsburgh we reject the null hypothesis in favor of the 



presence of an underlying pattern. The high Z-scores and the nearest neighbor ratio 
results indicate that the New York City and Pittsburgh datasets are clustered not ran-
domly dispersed. For Erie, we cannot reject the null hypothesis due to the value of z = 
-0.57 which falls within our 95 % confidence interval. As a result, we cannot say the 
Erie dataset displays clustering. 

 

5 Discussion 

Our analysis shows that most unique venues trend less than the average number of 
times trending for the three test cities over 25 days. The trending data in Erie shows a 
tighter fit around the average value and a more even distribution above and below the 
average values than the other cities. From the map, we observe the majority of the 
trending venues in Erie are on one specific street. This indicates a concentration of the 
trending venues in Erie; however, we were unable to confirm the presence of cluster-
ing in our nearest neighborhood analysis. Pittsburgh displayed trending patterns that 
were fairly close to those of the other three cities. The map of the Pittsburgh venues 
showed a lot of different places trending in the heart of the city and smaller areas 
trending outside of the city. In the nearest neighbor analysis, Pittsburgh showed the 
highest degree of clustering among the three cities. We believe the presence of the 
bridges in Pittsburgh also make this city unique in terms of the spatial patterns of 
trending and contribute to the higher degree of clustering we detected. In a large city 
like New York, there are trending venues everywhere in a variety of categories.  This 
variety of venues explains why New York City has the highest standard deviation 
from the average times unique venues trend. We found that New York City displayed 
clustering of the trending venues and is the most densely packed city with shorter 
distances between neighboring venues. We can now add to the findings of our previ-
ous study that trending venues are located in a concentrated area in Erie, PA, but in 
New York City they are located everywhere, with Pittsburgh, PA showing a little bit 
of both of these patterns. 

6 Limitations 

     Although our experimental setup was simple, we have a few limitations.  To begin, 
our conclusions were dependent on the latitude and longitude coordinates given to the 
Foursquare API.  Different coordinates could have yielded different results regarding 
the trending venues we received.  For example, latitude and longitude coordinates in 
the middle of downtown are not representative of the entire city and since most cities 
have a lot of possible latitude and longitude pairs, the pairs we chose for each city 
may not be in similar areas (e.g., downtown, shopping district).  

   Secondly, our study period of 25 days is not long enough to get a complete pic-
ture of the categorical and spatial patterns of trending events in the three cities.  Alt-
hough we establish preliminary patterns, a period of time covering more holidays and 
weekends would provide a more complete picture. Finally, in order to confirm our 



results for Erie, we believe that a larger dataset is required since the number of unique 
venues in Erie during our study period was 32. 

7 Conclusions and Future Work 

     In conclusion, this study begins to help us understand the categorical and spatial 
patterns of trending on Foursquare.  The purpose of which is to support our long term 
goal to understand why certain venues trend.  A solid understanding of the trending 
phenomenon on Foursquare can help researchers in urban analytics understand the 
meaning of trending and make use of the data in creative ways and help venue owners 
maximize  their  business’s  exposure  on  Foursquare.   We selected three cities of vary-
ing sizes to obtain the strongest case for our analysis, New York City, NY, and Pitts-
burgh and Erie PA. We find that for all three cities, the majority of venues trend less 
than the average number of times trended for the city as a whole and that both New 
York City and Pittsburgh exhibit clustering of unique trending venues over a 25 day 
study. This paper representes a work in progress thus, more studies are necessary to 
confirm the spatial patterns we find and to complete our understanding of the trending 
phenomenon. 
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Abstract 
The behavior of animals is very much influenced by their surrounding environment. With the advances in 
positioning and sensor technologies, it is now possible to capture data of animal locations as well as their 
surrounding environmental information, at previously unseen spatial and temporal granularities. As a 
consequence, research interest in developing computational methods for the analysis of movement has 
increased significantly over the past few years. Yet, the link between movement data and the 
environmental variables has been largely ignored in existing exploratory tools, as well as in previous 
studies of movement behavior of animals. The MoveBank environmental data annotation project expands 
an open portal of animal tracking data and enriches it with automated access to environmental variables, 
as well as effective computational methods to study and process movement and environment data. The 
aim is to facilitate the investigation and develop a new understanding of spatiotemporal patterns of animal 
movement in response to a changing environment. The outcomes will contribute to a better modeling, 
understanding, and ultimately prediction of the behavioral changes of animals in response to global 
change. 

1. Introduction 
Today, with the advances in sensing technologies and satellite observations, we have access to a large 
array of remote sensing datasets capturing the past and current states, and informing models that calculate 
future forecasts of our dynamic environment. As a consequence, researchers developed a great interest in 
exploiting these valuable sources of information to gain a better understanding of the interaction between 
environment and spatiotemporal processes in various disciplines, including animal movement. 

Movement is essential to almost all organisms and spatiotemporal processes. Recent years have witnessed 
an explosion of research activities on movement datasets, triggered by the advent of inexpensive and 
ubiquitous positioning technologies (e.g. GPS, geo-sensors, RFID tags), in many disciplines such as 
biology, Geographic Information Science (GIScience), computer science, environmental science, 
movement ecology, and cognitive science. As a consequence, the study of movement has gained a great 
momentum in science and technology, as evidenced by the vast amount of literature published on the 
subject during the past decade (MOVE, 2009).  

Currently, knowledge discovery and data mining techniques for analyzing movement data are mostly 
based on the geometric properties of the trajectories (i.e. the path of an object through space and time) and 
embedding environmental variables has been ignored (Miller and Han, 2009, Buchin et al., 2011, Dodge 
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et al., 2012). However, in real world applications the movement of an organism is very much influenced 
not only by its internal state (i.e. the focal individual) but also external factors (i.e. the environment and 
underlying context) (Nathan et al., 2008). That is, environmental conditions may cause certain movement 
patterns, and thus can potentially be considered as important indicators for the identification of patterns in 
the movement of animals. For instance, an animal may move faster or slower depending on how high the 
ambient temperature is, or stop altogether when there is precipitation. Likewise, abnormal changes in 
environment temperature may influence the behavior of organisms (Gordon, 1991). For instance, 
behavioral changes may occur in the migration of birds when cold weather arrives very rapidly rather than 
when the weather gradually turns cold. Animal can also optimize their energy expenditure during flight 
by selecting for locations and time when the conditions are supportive for movement. For example, 
vultures and eagles in their southward fall migration select for a preferential mode of uplift that best fits 
their flight capacity (Mandel et al., 2011; Bohrer et al., 2012).  Therefore, it is essential to gain knowledge 
about how movement and decisions in moving animals are induced and interact with the physical 
environment that the animal is exposed to. In order to better understand the behavior of migratory animals 
and  to  answer  questions  such  as  “when  do  animals  start  migrating",  “which  strategies  should  they  adopt  
while  migrating"  and  “how  if  at  all  do  movement  rules  change  in  a  changing  environment”, it is necessary 
to take a closer look into the interaction of the organisms with their environment, in particular in the 
continental scale migration.  

Animals, particularly birds, travel long distances in their migration courses, and thus, their trajectories 
cross broad areas of the globe and a diverse environment. Moreover, in order to investigate changes in 
their migratory behaviors, the animals need to be tracked for entire migratory routes, and preferably with 
some replication of migration events, over several years. Thereby, very large datasets of remote sensing 
observations are required to extract the environmental information embedding the animals’  migration  
paths in space and time. Here, scientific and technical challenges rise in developing the link between the 
growing  collections  of  animals’  movement  data  and  the  big data repositories of remote sensing 
observations containing environmental variables, obtained from satellite remote sensing products such as 
the MODIS ecological, ocean, land cover and land use data sets, the NCEP-NCAR weather reanalysis 
datasets, as well as high resolution Digital Elevation Models (DEMs). Namely, efficient storage, 
indexing, retrieval, and analytical techniques are required for handling and analysis of these data. Also 
such vast datasets demand for sophisticated context aware data mining and pattern recognition techniques, 
in order to discover patterns of movement in response to changes in the environment. Hence, an 
integrated system capable of managing and analyzing movement tracks of animals linked to large climatic 
and land use datasets is widely needed in the movement ecology community. 

2. Research Objectives 
The main objective of this study is to develop an open portal that will streamline the co-registration of 
animal tracking data with a variety of environmental variables such as weather and land surface data. The 
aim is to provide efficient knowledge discovery methods to examine relationships between observed 
animal movements (spatiotemporal data of biological observations) and a breadth of information about 
environmental conditions. The methods will enable discovering unique information about weather 
dependencies of habitat, migration and landscape connectivity of migratory birds and other threatened and 
endangered species. These kinds of information are crucial for planning and management of areas 
allocated as refuges and for forecasting the population status and habitats needs in future conditions of 
climate and land use changes.  
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3. Research Questions 
The study will help to investigate biological research questions about movement behavior of animals, 
including migratory birds that are of concerns to the impact of climate change and environmental 
changes. In order to achieve the objectives, we will, particularly, investigate the following two research 
questions: 

1. How does the movement behavior of animals change in response to a change in environment?  
2. Do animals optimize their migration paths according to the climatic conditions?  

 
4. Research Plans 
The project is based on extending the capabilities of the existing migration data portal: MoveBank1 
(Kranstauber et al. 2012; Wikelski and Kays, 2012). MoveBank is a free, online database of animal 
tracking data, which provides biologists and animal tracking researchers with a secure on-line archive to 
store, manage, process, and share animal movement data. We are currently developing new capabilities 
within MoveBank, which include:  

 Generating an automated system with a graphic user interface to annotate animals’  movement 
trajectories with environmental information. Path annotation attributes environmental data to each 
reported tracking location (in space and time) along the migration paths.  

 Generating and attributing virtual tracks, such as those based on temporal offsets or random walk 
algorithms, allowing statistical comparisons between observed data and other hypotheses. 

 Developing knowledge discovery and visualization techniques to be applied to explore patterns in 
the linked movement data (e.g. segmentation, movement pattern recognition techniques). 

To ensure its relevance and effectiveness, the portal and its toolboxes are designed in collaboration with 
our wildlife research partners from the US Fish and Wildlife Service (FWS), the US National Park 
Service (NPS), the US Geological Survey (USGS), who are active participants in this project and are 
contributing the bird migration data,  to  guarantee  the  portal’s  applicability  and  relevance  to  contemporary  
conservation and wildlife management.  

5. MoveBank Data Archive 
The proposed system requires a large database containing environmental variables from remote sensing 
products, as well as spatio-temporal movement trajectories of migratory birds. Both environmental and 
movement data are growing in time. Moreover, the project aims at handling such data at the global scales. 
Hence, the system requires a large volume of memory and data space for data storage and retrieval. To 
alleviate this problem and effective management of our large database we have secured a 25 TB storage 
space and 100,000 CPU time unites at the Ohio Supercomputer Center (OSC) in Columbus, USA, and a 
50 TB storage system at the Max Plank Institute supercomputer at Garching. 

As of January 2012, MoveBank currently holds 429 studies of animal movement data published by 159 
contributors. These studies include tracking worldwide data of 185 species, 19,414 tracks, which so far 
contains about 51,000,000 data points that expands by day1.  

                                                           
1 www.Movebank.org 
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Table 1 Available environmental datasets for the trajectory annotation service 

Data Data Source Projection 
system / 
Grid 

Temporal 
Coverage 

Geographic 
coverage 

Temporal 
resolution  

Spatial 
resolution 

Data 
Format 

Tropical 
Rainfall 
Measuring 
Mission 
(TRMM) 

NASA  
(http://trmm.gsfc.nasa.gov/) 

Regular 
lat/lon grid 

1998- 
present 

Latitude: 
50°N - 50°S  
Longitude:1
80°E - 
180°W 

3-hour 0.25°  
 

unformat
ted 
binary 

AVHRR 
land NDVI 

USGS  
(http://phenology.cr.usgs.go
v/ndvi_avhrr.php) 

Regular 
lat/lon grid 

1989-
present 

Latitude: 
90°N - 90°S  
Longitude:1
80°E - 
180°W 

1-week,  
2-week 

1 Km  unformat
ted 
binary 

NCEP 
Global 
Reanalysis 

NOAA  
(http://www.cpc.ncep.noaa.
gov/) 

regular 
(non-
Gaussian) 
grid 

1948-
present 

Latitude: 
90°N - 90°S  
Longitude:1
80°E - 
180°W 

6-hour 
8-day 

2.5°  
(208 Km) 

NetCDF 

North 
American 
Regional 
Reanalysis 
(NARR) 

NOAA  
(http://www.emc.ncep.noaa.
gov/mmb/rreanl/) 

Lambert 
Conformal, 
Conic Grids 

1979-
present 

Latitude: 
90°N - 1°N 
Longitude: 
0° - 170W° 

3-hour 32 Km  
(at 40°N) 

GRIB 

ECMWF 
Reanalysis 

ECMWF  
(http://www.ecmwf.int/) 

Regular grid 1979-
present 

Latitude: 
89.463°N - 
89.463°S 
Longitude:1
80°E - 
180°W 

6-hour 0.7° GRIB 

MODIS 
Land 

NASA 
(https://lpdaac.usgs.gov/) 

Geographic/ 
Sinusoidal 
grid 

2002 - 
2012 

Latitude: 
90°N - 90°S 
Longitude:1
80°E - 
180°W 

Daily,  
8-day,  
16-day, 
monthly 

5.6 Km  
(0.05°) 

HDF- 
EOS 

MODIS 
Ocean 

NASA  
(http://oceancolor.gsfc.nasa.
gov/) 

Cylindrical 
Equidistant  

4 Km,  
9 Km 

HDF- 
EOS 

MODIS 
Snow 

NASA  
(http://modis-snow-
ice.gsfc.nasa.gov/ 

Cylindrical 
Equidistant  

1 Km,  
4 Km 

HDF- 
EOS 

Ocean 
productivity 

http://www.science.oregonst
ate.edu/ocean.productivity/ 

Regular 
lat/lon grid 

1997- 2009 Latitude: 
90°N - 90°S  
Longitude:1
80°E - 
180°W 

8-day, 
monthly 

grid sizes 
1080x216
0  
2160x432
0 

HDF 

ASTER 
GDEM  

USGS 
(https://lpdaac.usgs.gov/con
tent/view/full/11033) 

Regular 
grid, 
(WGS84 
ellipsoid) 

 Latitude: 
83°N - 83°S  
Longitude:1
80°E - 
180°W 

 1 arc-
second 

GeoTIFF 

GlobCover ESA 
(http://dup.esrin.esa.it/prjs/p
rjs68.php) 

Plate-Carrée 
projection 
(WGS84 
ellipsoid) 

2009 Latitude: 
90°N - 65°S 
Longitude:1
80°E - 
180°W 

 20 acres HDF 

Socioecono
mic data 
(Population 
Density 
Grid) 

http://sedac.ciesin.columbia.
edu/gpw/global.jsp 

Regular grid 
(WGS84 
ellipsoid) 

1990-2010 Latitude: 
85°N - 58°S 
Longitude: 
180°E -
180°W  

5 years 30 arc-
second 
(1km) 

ASCII 
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On the other hand, up to now a large amount of remote sensing data has been obtained from various 
sources (e.g. NASA, NOAA, USGS, ECMWF), and archived at OSC to support the MoveBank project. 
Table 1 summarizes the available data sources that are already added to system. As seen on the table, the 
archive contains large resources of global climatic data, population densities, topography, and land use 
data over the last several decades. The data are obtained in different formats, such as NetCDF, GRIB, 
HDF, GeoTIFF, ASCII, and are used to link to animal tracking data. In order to maintain the link between 
these different datasets we have developed a trajectory annotation service, described in the next section. 
 
6. Showcase: Trajectory Annotation Service 
Trajectory annotation service is one of the main components of the system. Annotation is a data 
integration approach that meets the needs of understanding movement in its environmental context. 
Borrowed from computer science, where it is used in web browsing, the term “path annotation” is used 
when additional data about important variables, encountered through a particular path, are added to the 
object trajectory. In the context of animal movement, an annotated trajectory would include the values of 
environmental and physiological variables, co-located in time and space with the moving organism 
(Mandel et al. 2011). Figure 1 shows an example of Galapagos Albatross trajectory, tracked from June to 
September 2008, annotated with air temperature (a), wind speed (b), and (c) movement speed of the bird.  

 

Figure 1 Annotated trajectories of an albatross 

Environmental and animal movement data are usually collected in different spatial and temporal scales. It 
is therefore crucial to choose appropriate spatial and temporal scales for the annotation process, and 
accordingly a relevant interpolation technique needs to be applied. The developed annotation service 
allows a number of interpolation techniques in space and time, such as k-Nearest Neighbors, Bilinear, 
Linear, and Inverse Weighted Distance interpolations. Because of the large volume of raster data, 
efficient interpolations, and indexing strategies have to be undertaken to provide an effective annotation 
service for the users. The bottleneck of the service is data download from different providers such as (see 
Table 1).  

The annotation service includes the following processes: 
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a. Annotation Request: The annotation service is prompted by a user request through the system 
interface. The users may request for two types of annotation: annotation of a gridded geographic 
area, or annotation of a set of trajectories. An annotation request starts with the selection of the 
requested sub-set of environmental variables, spatial and temporal resolutions, as well as 
interpolation method.  In case of trajectory annotation request, the spatial and temporal resolution 
and coverage of the environmental data are determined by the system according the spatial and 
temporal information of the input trajectories.   

b. Data Acquisition: As the combined volume of globally available environmental data is at the 
order of petabytes and keeps increasing, it is unfeasible to mirror all the source environmental 
data locally. Instead, we have developed a caching strategy using mySQL database according to 
which we keep the most accessed data, and download any other data upon request if it is not 
locally stored. New data requests (provided as a list of locations, times and variables) are 
translated to lists of needed data sources, sorted according to data service, variable, timestamp 
and scene (i.e. a raster tile). Multiple data sources are listed when the location in the movement 
path requires interpolation between scenes and/or in time, or when derived variables, such as 
available thermal uplift demand the combination of several input environmental variables. The 
data-sources list is compared with the stored metadata table and data that are not stored locally 
are being requested from their provider using an ftp or OPeNDAP interface. We rank each scene 
according to the frequency it was accessed since download. The least accessed scenes are deleted 
when space is needed for new data download. 

c. Data Interpolation: Once all needed data sources are locally available, the environmental data 
from  each  scene  is  interpolated  for  all  trajectory  points  that  are  within  that  scene’s  domain.  The 
interpolation strategy differs according to the type of data. For instance, for categorical data, the 
Nearest Neighbor Interpolation is applied, whereas for continuous-numeric data types either a 
bilinear (in regular grids) or Inverse Weighted Distance interpolation is chosen based on the 
resolution of data.  

The annotated trajectories and gridded geographic areas are delivered to the user via ftp download. The 
user receives an e-mail when the download is ready. Data are used for the investigations of the interaction 
between the migratory behaviors of animals and their environment, using data mining and visualization 
approaches. We provide codes for suggested knowledge discovery and data mining methods and a user 
support-group site where users can post new analysis and visualization tools (typically in R) and comment 
on existing tools. 

7. Concluding Remarks and Open Questions 
This project has to overcome the following technical and methodological challenges in order to achieve 
the objectives: 

 Optimizing storage and retrieval times for a very large dataset of environmental variables from 
multiple data provides 

 Applying effective interpolation techniques in order to maintain the link between animal tracks 
and their embedding environment in space and time. 

 Applying suitable spatiotemporal indexing strategies for data retrieval 
 Maintaining a large database of remote sensing data 
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In addition to the technical challenges, the research has to address scientific problems regarding the 
development of exploratory methods to investigate the impact of climate change on the migratory 
behavior of animals. For this purpose, this study will exploit deterministic GIScience, and spatiotemporal 
data mining techniques, as well as well-known statistical approaches to discover patterns and structures in 
the migration of animals. There are several methodological questions that have to be taken into 
consideration in the development of such knowledge discovery approaches. We would like to share these 
questions at the workshop of GIScience in the Big Data Ages, as we think they could be relevant to most 
of GIScience researches that are dealing with the study of movement and spatiotemporal phenomenon: 

 How to integrate context variables (e.g. environmental data) in movement pattern analysis 
effectively? 

 To what extent are deterministic knowledge discovery approaches used in GIScience applicable 
for finding structures in the movement of animals?  

 How generic are the proposed pattern recognition methods for different animal species or various 
movement datasets? 
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