
1 Introduction 

The amount of geographic information available as Linked 
Open Data (LOD) is rapidly increasing and becoming an 
invaluable source for application development.  The term 
Linked Data refers to a set of best practices to publish 
machine-readable and semantically annotated data online [1]. 
The approach builds on established Web standards for 
identifying and accessing data sources (URLs), lightweight 
semantics (RDF) for data description, and a standardized 
query language for data access (SPARQL). These principles 
facilitate a distributed and interlinked collection of datasets 
known as the Linked Data Cloud [3]. Geographic information 
sources such as GeoNames1 play a central role in this cloud, 
which is also documented by new datasets from cultural 
heritage [5], environmental monitoring [6], and emergency 
response [7], as well as the OGC GeoSPARQL query 
language [8]. 

At the same time, software development has transformed 
towards cloud environments and multi-platform development, 
especially including mobile devices. New software 
development platforms and libraries have eased the 
development of interactive web pages and mobile apps. 
Examples are web frameworks such as Django,2 online 
content management systems such as Drupal3 and mobile app 
platforms such as PhoneGap4 and App Inventor5 [10]. 

                                                                    
1 http://geonames.org 
2 https://www.djangoproject.com 
3 http://drupal.org 
4 http://phonegap.com 
5 http://appinventor.mit.edu 

The goal of this paper is to review the process to get from 
LOD to a working application and put it in the context of the 
required skillset. We sketch the steps in developing web-based 
visualizations of humanitarian data (see Figures 1 and 2) and 
draw conclusions concerning the practical and conceptual 
skills that need to be covered in a GIScience curriculum for 
students to be able to complete such a development task. 
 

Figure 1: Web-based visualization of data from the 
International Aid Transparency Initiative. Brighter colors 

indicate higher amounts of development aid received. 

 

Geo-Information Visualizations of Linked Data 

 Rob Lemmens 
University of Twente 

Faculty of Geo-
Information Science and 
Earth Observation (ITC) 

P.O. Box 217 
7500 AE Enschede 

The Netherlands 
r.l.g.lemmens@utwente.nl 

Carsten Keßler 
Center for Advanced Research 

of Spatial Information and 
Department of Geography 

Hunter College, CUNY 
695 Park Avenue 

New York, NY-10065 
USA 

carsten.kessler@hunter.cuny.edu 
 

 

 

Abstract 

Linked Data provides an ever-growing source of geographically referenced data for application development. In this paper, we analyse 
the workflow behind the development of such an application. Using two examples based on worldwide development aid and refugee data, 
we discuss the steps from locating data for use and data integration, up to the actual visualization in a web-based application. At each step, 
we discuss the skill set required for completion and point to potential challenges. We conclude the paper by putting our case study in the 
context of GIScience curriculum development.  

 
Keywords: Linked Data, visualization, development, frameworks, workflow 



AGILE 2014 – Castellón, June 3-6, 2014 
 

2 Development workflow 

This section describes the different steps that were required 
to build the two sample web applications and discusses the 
different skills required to complete them. Figure 3 gives an 
overview of the different components and their interplay. 

 
Figure 2: Web-based visualization of UNHCR refugee data. 

The blue arrows connect the refugees’ current country of 
residence and their home country. 

 
 
 
2.1 Locating data 

Linked Data sets can be provided as RDF files in different 
formats or through SPARQL endpoints. Registries such as 
W3C SparqlEndpoints6 and datahub7 act as a good starting 
point to look for data relevant to the given application, from 
which the developer can look for related (i.e., linked) datasets. 
This process requires a general understanding of the Linked 
Data principles and potentially some proficiency in the 
SPARQL query language. In case of the two sample 
applications developed for this case study, the datasets 
included data from the International Aid Transparency 
Initiative,8 the Humanitarian eXchange Language [7],9 
UNCHR refugee statistics (self-hosted), DBpedia,10 and 
currency conversion rates.11 

 
 

2.2 Data access 

Whether the data is available as a file or from a SPARQL 
endpoint, data access will typically start by exploring the 
dataset, e.g., by listing the resources provided, or by browsing 
their types and the properties that describe them. This process 
iteratively leads to a query that generates the subset of the 
dataset the developer wants to process in her application, and 
it often includes reverting to locating additional data sources if 
information is missing.  

Retrieving the data in the required form can also prove 
challenging. In both of our examples, the goal for the 
visualization was to show aggregates, i.e., the total amount of 
development aid that went to a given country, and the total 
number of refugees from country A that are currently in 
country B. The actual data, however, were highly 

                                                                    
6 http://www.w3.org/wiki/SparqlEndpoints 
7 http://datahub.io/organization/lodcloud 
8 http://aidtransparency.net; data provided as LOD by VU Amsterdam 
at http://eculture.cs.vu.nl:1987/iati/home 
9 http://hxl.humanitarianresponse.info 
10 http://dbpedia.org 
11 http://currency2currency.org 

disaggregated, e.g., by donor (IATI) or by demographic 
breakdown (UNCHR). The extra steps in the query require in-
depth knowledge of the SPARQL query language and pose an 
additional challenge for novice developers. The following 
query, for example, asks for the total number of refugees from 
country A in country B, as specified in the UNHCR data: 

 
prefix	  hxl:	  <http://hxl.humanitarianresponse.info/ns/#>	  
prefix	  dbpprop:	   <http://dbpedia.org/property/>	  	  
	  

SELECT	  DISTINCT	  ?fromCode	  ?toCode	  (SUM(?count)	  AS	  
?refugees)	  WHERE	  {	  
	  	  	  
	  	  ?pop	  	  hxl:atLocation	  ?to	  ;	  
	  	   hxl:placeOfOrigin	  ?from	  ;	  
	  	  	   hxl:personCount	  ?count	  .	  
	  
	  	  ?to	  	  	  hxl:atLocation	  ?country	  .	  
	  
	  	  ?country	  dbpprop:isoCode	  ?toCode	  .	   	  
	  	  ?from	  	  	  	  dbpprop:isoCode	  ?fromCode	  .	   	  
	  	  	  	  	  	  	  	  	   	  	  	  
	  	  FILTER	  (?count	  >	  0)	  	  
	  	  
}	  GROUP	  BY	  ?fromCode	  ?toCode	  ORDER	  BY	  ?fromCode	  
 
While we have only worked with separate datasets for the 

visualizations presented here (option 1 in Figure 3), a fully 
distributed solution based on federated queries (option 3 in 
Figure 3) would require additional data. For the IATI 
application, for example, the development aid numbers 
provided as LOD are in different currencies, so they all have 
to be converted to a common currency. This requires an 
additional data source with currency conversion rates, such as 
currency2currency [12]. 

 
 

2.3 Data integration 

Whenever more than one dataset is required for the 
application, these datasets in most cases have to be integrated 
in some way. If the goal is a simple visualization on a map, 
and the involved datasets include spatial references, the 
integration can be done on the map. In that case, this is a 
purely visual integration, and no further work is required.  

In most cases, however, the underlying data will have to be 
integrated through common identifiers – similar to joins 
between tables in a relational database. In our IATI 
application, for example, we had to join the IATI data and the 
currency conversion rates to DBpedia, since the former uses 
3-letter ISO currency codes, while the latter uses DBpedia 
URIs as identifiers for the currency codes. The corresponding 
integration can be implemented either in the query or in the 
application. An implementation in a federated query [9] that 
accesses multiple RDF datasets at once has the advantage that 
the result is a single file that can be directly processed by the 
framework used for the user interface. However, this approach 
is often slow since SPARQL results from multiple endpoints 
have to be collected, integrated, and returned to the client. 
Querying each dataset separately from the application is often 
faster, but results in multiple files that have to be integrated at 
the application level, thus placing more load on the client. 
Again, these considerations require knowledge about different 
querying and caching techniques to improve response time, 
depending on how frequently the queried datasets are updated.  

 



AGILE 2014 – Castellón, June 3-6, 2014 
 

 
2.4 Data output and visualization 

While the XML-based SPARQL results format that endpoints 
return by default is very uncommon in any non-semantic web 
environment, the results can also be obtained in more 
common formats, such as CSV or JSON. The desired 
response format for a query can be set through an additional 
parameter in the HTTP request, or by setting the 
corresponding HTTP accept header. Both approaches require 
basic knowledge of the HTTP protocol and experience in 
using libraries such as cURL.12 

The decision which results format should be chosen hinges 
on the input formats supported by the library chosen for the 
user interface. In a web development context, SPARQL query 
results can be shown by dedicated tools such as sgvizler [11] 
and Spark.13 Web-based data aggregation tools such as 
Highcharts14 and Google fusion tables15 allow for combining 
spreadsheet-type information into graphs and simple maps on 
the web. Geo-information representation tools such as 
OpenLayers16 and Leaflet17 specifically handle georeference 
systems and map rendering. 

                                                                    
12 http://curl.haxx.se 
13 http://www.revelytix.com/content/spark 
14 http://www.highcharts.com/ 
15 http://www.google.com/drive/apps.html#fusiontables 
16 http://openlayers.org/ 
17 http://leafletjs.com/ 

We have opted for a generic and scalable tool based on 
Javascript: the D3 (Data Driven Documents) library, as this 
provides powerful capabilities for all of the above, is fairly 
easy to learn and is well documented. Any of the options 
listed above requires a certain level of proficiency in 
JavaScript, HTML, and CSS. While we focus on web-based 
applications here, developing native applications for desktop 
or mobile platforms adds another level of complexity. 

 
3 Application: IATI data visualization 

To demonstrate the needs for the abovementioned app 
development, we take the use case of creating web-based 
visualizations of humanitarian data, coming from different 
sources.  In our case, these sources can be combined in 
different ways, basically through SPARQL queries and by 
data merging in the app. The latter is implemented by D3 
JavaScript functions. 

Figure 3 depicts the options: Separate visualizations (1), 
combined visualization by app merge (2) and combined 
visualization by SPARQL query (3). Combined visualizations 
allow for an integrated analysis of sources. In contrast to 
studies such as Findley et al. [4], which demonstrates 
geographical correlations between foreign aid and armed 
conflicts, we do not intent to explain such correlations, but 
rather focus on the technical aspects of data source 
integration. 

Figure 3: workflow components and integration options. 

 
 
 



AGILE 2014 – Castellón, June 3-6, 2014 
 

The International Aid Transparency Initiative (IATI) fosters 
the exchange of information on international aid projects. 
IATI does this by setting standards for information exchange 
and providing a hub for registering data sets. IATI does not 
provide the data itself, this is done by the donor organizations 
themselves. IATI does provide information about how to 
create and consume IATI-standardized information and about 
available tools by third parties. IATI information has been 
deployed in a triple store [2] and is available as a SPARQL 
endpoint. 

Since a federated query approach proved too slow during 
the data integration step, subsets of the used datasets were 
exported using SPARQL construct queries and loaded into a 
local triple store. This allowed for faster iterations during the 
development of the integration query, which was then 
ultimately used to produce a CSV file fed into D3. In a 
production environment, this file could be produced directly 
from the original endpoint via federated query and cached, 
with updates e.g. on a daily basis, depending on the data 
update frequency. 
 
4 Conclusions 

The amount of Linked Open Data containing geographic 
information is growing and becomes an attractive data source 
for application development. Based on the premise of truly 
linked data, it should be straightforward to use data from 
different sources together in applications. In reality, the 
integration of data from such sources to be able to use them 
together is still challenging, leading to situations where it is 
easier and more straightforward to download subsets of the 
data and integrate them locally. While this is a practice-
oriented approach, it is clearly not in the spirit of Linked Open 
Data.  
Once the data for an application has been assembled, the 
developer is confronted with the choice from a wide variety of 
frameworks for implementation. While many frameworks 
such as D3 have sophisticated functionalities for the 
visualization of and interaction with geoinformation, putting 
them to use still confronts novice developers with a steep 
learning curve. In order to implement the (relatively simple) 
visualizations shown in this paper, profound knowledge of 
RDF, SPARQL, HTTP requests, HTML, and JavaScript is 
required. Adding interaction and developing for touch screen 
devices, for example, adds another layer of complexity.  
While adding all of these technologies to the already 
demanding GIScience curricula is hardly possible, we believe 
that the study programs can enable their students to learn 
these (and other) new technologies faster. Proficiency in 
different geo-information standards is already part of the 
curriculum in many programs and can easily be extended to a 
broader range of web standards. Existing research methods 
courses can be extended with sections on research for 
software development to familiarize students with resources 
such as StackOverflow18 as well as tools such as GitHub19 and 
bl.ocks.org.20 Finally, hands-on lab exercises that ask for the 
development of creative solutions, rather than following 
“click-through” instructions, get the students used to 
independent problem solving. 
 

                                                                    
18 http://stackoverflow.com 
19 https://github.com 
20 http://bl.ocks.org 

References 

[1] Berners-Lee, T.: Linked Data – Design Issues (2009) 
Online: 
http://www.w3.org/DesignIssues/LinkedData.html 
     

[2] Brandt, K. (2013), Linked Data for IATI, MSc 
Thesis,Vrije Universiteit Amsterdam. 

 
[3]  Cyganiak, R., Jentzsch, A. (2011) Linking Open Data 

cloud diagram. Online: http://lod-cloud.net 
 
[4]  Findley, M. G., J. Powell, D. Strandow, and J. Tanner 

(2011), The Localized Geography of Foreign Aid: A 
New Dataset and Application to Violent Armed Conflict, 
World Development, 39(11), 1995–2009, 
doi:10.1016/j.worlddev.2011.07.022. 
 

[5] Haslhofer, B., & Isaac, A. (2011). data.europeana.eu: 
The Europeana Linked Open Data Pilot. In International 
Conference on Dublin Core and Metadata Applications 
(pp. 94-104). 

 
[6] Kauppinen, T., de Espindola, G. M., Jones, J., Sánchez, 

A., Gräler, B., & Bartoschek, T. (2013). Linked brazilian 
amazon rainforest data. Semantic Web. 

 
[7] Keßler, C. and Hendrix, C. (forthcoming) The 

Humanitarian eXchange Language: Coordinating 
Disaster Response with Semantic Web Technologies. 
Semantic Web Journal, accepted. 

 
[8] OGC (2012) GeoSPARQL – A Geographic Query 

Language for RDF data. 
 
[9] Prud'hommeaux, E.,Buil-Aranda, C. (2013) SPARQL 1.1 

Federated Query. W3C Recommendation: 
http://www.w3.org/TR/sparql11-federated-query/ 

 
[10] Shih, F., O. Seneviratne, D. Miao, I. Liccardi, L. Kagal, 

E. Patton, C. Castillo, and P. Meier (2013), 
Democratizing Mobile App Development for Disaster 
Management, in AIIP  ’13 Joint Proceedings of the 
Workshop on AI Problems and Approaches for 
Intelligent Environments and Workshop on Semantic 
Cities, pp. 39–42, ACM. 

 
[11] Skjaeveland, M. (2012), Sgvizler: A javascript wrapper 

for easy visualization of SPARQL result sets, in 
Extended Semantic Web Conference. 

 
[12] Stolz, A. and Hepp, M.(2013) Currency Conversion the 

Linked Data Way, in: Proceedings of the Workshop on 
Services and Applications over Linked APIs and Data 
(SALAD2013), in conjunction with the 10th Extended 
Semantic Web Conference (ESWC 2013), May 26-30, 
Montpellier, France. 

 
 


