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a b s t r a c t

TheWeb of Data is a rapidly growing collection of datasets from a wide range of domains, many of which
have spatial–temporal aspects. Hägerstrand’s time geography has proven useful for thinking about and
understanding the movements and spatial–temporal constraints of humans. In this paper, we explore
time geography as a means of querying and integrating multiple spatial–temporal data sources. We
formalize the concept of the space–time prism as an ontology design pattern to use as a framework for
understanding and representing constraints and interactions between entities in space and time.Webuild
on a formalization of space–time prisms and apply it in the context of the Web of Data, making it usable
across multiple domains and topics. We demonstrate the utility of this approach through two use cases
from the domains of environmental monitoring and cultural heritage, showing how space–time prisms
enable spatial–temporal and semantic reasoning directly on distributed data sources.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license
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1. Introduction

The World Wide Web is currently undergoing a rapid change
from an information resource primarily targeted at human users
towards a distributed knowledge base that provides structured,
machine-readable information. ThisWeb of Data covers an increas-
ing breadth of topics, ranging from museum collections [1] and
drug databases [2] to humanitarian aid data [3] and real-time sen-
sor data [4]. Many of these data sources follow the Linked Open
Data (LOD) principles [5] that allow for the integration of ini-
tially isolated data silos. The number of applications leveraging this
large distributed database is constantly growing, including exam-
ples as diverse as the BBC program Web pages [6], drug discov-
ery tools [7], university management and campus navigation apps
[8,9], and exploration and visualization tools for rainforest preser-
vation data [10].

A large number of resources on the Web of Data have spa-
tial or even spatial–temporal components. This information can be
recorded at a very coarse level, such as the birth and death dates
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and places of a person1 or the production year and place of a cul-
tural heritage artifact.2 At the other end of the spectrum, such data
can be of high granularity, such as photo metadata3 or measure-
ments provided via Sensor Web services [4]. In these cases, loca-
tion is often recorded at sub-meter resolution and timestamps go
down to the minute or even second. Along this spectrum, these
spatial–temporal characteristics have the potential to identify in-
teractions between objects that co-occur in space and time.

The conceptual framework of time geography [11] has been in-
troduced to model the constraints that restrict humans in moving
and interacting with each other (and their environment). Build-
ing on the elegant and intuitive notions of space–time paths and
prisms, time geography has been applied to a number of different
use cases that all involve capturing and planning joint human activ-
ities [12–17]. In this paper, we broaden this view to analyze poten-
tial interactions between any spatial–temporal objects. The goal is
to utilize time geography as a framework for data integration based

1 http://d-nb.info/gnd/11855042X, for example.
2 http://www.kulttuurisampo.fi/item.shtml?itemUri=http%3A%2F%

2Fkulttuurisampo.fi%2Fannotaatio%23Instance_esine_H84039-21156597532081,
for example.
3 See http://500px.com/photo/61774497 as an example; while technically not

Linked Data, the page contains the photo metadata in a machine-readable format.
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Fig. 1. Features of Hägerstrand’s time geography. (a) Space–time paths with
bundling at a station; (b) Space–time prismwith accompanying potential path area.
Source: Adapted from [23,24].

on the spatial and temporal characteristics of information objects.
In this context, data integration refers both to the reconciliation of
different identifiers for the same real-world objects, as well as the
identification of related objects. In environmental monitoring, for
example, objects related to the measurement of a given pollutant
could be other measurements of the same or related pollutants in
the vicinity, or nearby events that may have influenced the mea-
sured values, such as a traffic jam, a fire, or an extreme weather
event.

To enable the systematic identification of such related objects,
we introduce an ontology design pattern [18] that formalizes the
space–time prism using the Web Ontology Language (OWL). It
builds on previous work on semantic trajectories [19] and inte-
grates it with the measurement theory for time geography intro-
duced by Miller [20]. The formalization presented in this paper
allows for the application of time geography concepts directly on
the Web of Data.

The remainder of this paper is organized as follows: The next
section reviews relevant relatedwork, followed by a generalization
of time geography in Section 3. Here we outline how space–time
prisms may be used to integrate disparate data sources. Section 4
discusses an ontology design pattern for space–time prisms,
followed by application examples in Section 5. Section 6 presents
conclusions and a brief discussion of future work.

2. Related work

This section points to related work on time geography and
ontology design patterns.

2.1. Time geography

Hägerstrand’s conceptual framework for time geography [11]
was originally developed to understand how human migration
activities are constrained at the individual level. Recently, there
has been renewed interest in time geography concepts in research
using geographic and/or spatial data (see [21,22] and references
therein). The basic concepts are the space–time path (see Fig. 1(a)),
showing an individual’s location changing with time, and the
space–time prism (see Fig. 1(b)), showing an individual’s travel
potential. This potential is constrained by the speed at which the
individual can travel, as well as locations at which he or she has to
be present, such as home or work.

Time geography has been applied in a wide range of scenarios,
including location-based services for individuals [12,13] and
user groups [14], accessibility models [25], shared-ride trip
planning [15,16], delineation of wildlife home ranges [26], gender
differences in access to opportunities [27], understanding place in
contextual models of health [28], and geovisualization of human
activity patterns [29]. Raubal [30] uses time geography to track
concepts – instead of people – through time, combining the
framework with conceptual spaces [17]. Time geography has since
been formalized in different ways, most thoroughly by Miller [20],
who introduces a rigorous measurement theory that formally
defines themain elements based on the basic assumptions that: (1)
the metric space satisfies the notions of identity, non-negativity,
and triangular inequality about distance; (2) data are recorded
at specific points in time; and (3) we have perfect information
about the system (although Miller [20] and others [31,32,24] have
explored relaxation of this assumption to some degree). Building
on these relatively simple assumptions, Miller [20] develops
a measurement theory for time geography, with mathematical
definitions for space–time paths, prisms, stations, bundles, and
intersections.

A space–time path consists of a sequence of control points
and a corresponding sequence of path segments connecting these
points. In this definition, control points are observed or measured
locations in space and time, and segments connect temporally
adjacent control points (usually represented as a straight line
between observed points). A space–time prismmay exist between
any pair of temporally adjacent control points, creating an open
temporal interval during which un-recorded travel may occur.
An object may thus occupy locations in space other than the
straight-line segment between two adjacent control points (see
Fig. 1(b)). Stations are generally designated activity locations
(e.g., homeor office), and are siteswheremultiple paths can bundle
(convergence of two or more paths for some shared activity) for
some given length of time. This has direct relevance to space–time
intersections, which is the case of two or more time geographic
features sharing some locations in space and time. Space–time
intersections are generally more explicit than bundling and may
be the result of a shared space–time activity.

Miller [20] provides strict conditions within which space–time
paths are bundled and where intersections may occur between
paths and prisms; he also provides geometrically-based definitions
for paths, prisms, and related constructs. While we also adopt
this traditional object-based view on time geography, these strict
conditions can be relaxed in some sense by allowing for imperfect
information or non-uniform velocities [33]. By placing time
geography within a stochastic framework, qualitative statements
about potential interactions within intersecting prisms can be
quantified using a priori knowledge about an object’s behavior
and some knowledge of the probability distribution of an object’s
location over time [31,32].

2.2. Ontology design patterns

The concept of a design pattern has its origins in architecture
and has been adopted for software engineering, where it refers to
a template solution for a recurring software design problem [34].
Such patterns can address different aspects of software design,
such as structural design, algorithm strategies, or user interaction.
Ontology design patterns (ODPs) [18,35] transfer this idea
from software to ontology engineering. They introduce template
solutions for common ontology modeling problems. An instance
(i.e., an actual implementation) of an ODP can typically be found as
a component or module of an ontology.

ODPs can be classified into logical and conceptual patterns [36].
While the former focus on the formal specification of a pattern at
the logical level (e.g., in first order or description logic), the latter
generally target the conceptualization of an ontology fragment.
The participation pattern extracted fromDOLCE [37] is an example
of such a conceptual ODP. It describes the relationship between an
object located in space and the event it participates in, which is
temporally located in a time interval (see Fig. 2).

Ontology design patterns that explicitly address the handling of
spatial information include patterns for spatial data quality [38],
for quantification over types (e.g., to count the number of species
in a region) [39], for cartographic map scaling [40], and for the
relationships between stimuli, sensors, and observations [41]. In
the context of time geography, recent research on the semantic
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Fig. 2. Schematic overview of the participation ontology design pattern.
Source: Based on [36].
enrichment of trajectories [42,43] demonstrates how to attach
semantic data to specific parts of space–time paths. This can
greatly improve discovery, reuse, and integration of trajectory
data from different sources. Hu et al. [19] have built upon the
notion of annotated trajectories by defining a formal ontology
design pattern for semantic trajectories that is directly applicable
to a variety of trajectory datasets and easily extensible to other
domains or application areas. In Section 4, we build upon this work
from the perspective of time geography in order to develop our
own space–time prism design pattern for spatial–temporal data
integration.

3. Generalizing the space–time prism

The measurement theory presented by Miller provides the
necessary tools to develop a framework for data integration across
a number of fields and data sources. Indeed, Miller alludes to
the idea of time geography as a means to develop an efficient
query design language in [20]. In the following, we propose a
novel perspective on the space–time prism that allows us to apply
selected time geographic principles for data integration and query
design.

3.1. Spatial autocorrelation

‘‘Everything is related to everything else, but near things are
more related than distant things’’ [44]. This idea is well-known as
Tobler’s First Law of Geography and also referred to as (positive)
spatial autocorrelation. In the following, we will consider the
relation between spatial autocorrelation and time geography and
the space–time prism in particular. The interactions we consider
here result in predefined and inferred space–time prisms. We will
discuss these two kinds of prisms in Section 3.2 as a motivation for
the formalization presented in Section 4.

Spatial autocorrelation essentially quantifies the correlation of
a variable with itself through space. This being the case, systematic
patterns in the spatial distribution of a given variable are often the
result of spatial autocorrelation, be it positive (i.e., nearby regions
display similar values), negative (i.e., nearby regions display
dissimilar values), or zero (i.e., no significant association between
regions) spatial autocorrelation. In this particular analysis, we
utilize the Moran’s I measure of spatial autocorrelation, which is
designed to compare spatially local averages with global averages
of a given variable by considering both the locational and attribute
relationship between each control point i across all space–time
objects and its surrounding neighbors j [45].

The metric is similar to the usual correlation coefficient, with
the addition of a spatial weights matrix with elements Wij,
such that entries in the matrix are coded as one if two control
points are ‘neighbors’ and zero otherwise. Here, neighbors are
defined as all control points within a given distance d of control
point i, or alternatively, some given number of nearby neighbors k
(alternative definitions of the weights matrix [and neighbors] are
possible). In order to derive a measure of spatial autocorrelation
at every control point across all trajectories, a local measure of
spatial autocorrelationmust be used (see [46] for a comprehensive
discussion of these metrics).

3.2. Interpretations of the space–time prism for data integration

In classical time geography, the shape of a space–time prism
is defined by the maximum travel velocity and the space–time
stations at the beginning and end of the time period available. If we
generalize the maximum travel velocity to any kind of interaction
in space, any measure of ‘relatedness’ can be used to define the
shape of the prism for a data integration task; this includes using
the degree of spatial autocorrelation of the phenomenon under
consideration.

In the simplest case where some measure of ‘relatedness’
is known, for any given recorded spatial–temporal location of
the object under consideration (i.e., a control point measured in
space and time), we can identify all potentially related objects
by checking whether they can be found within some predefined
space–time prism. Fig. 3(a) illustrates this case. In air quality
monitoring, for example, the size of the prism can be defined by the
dispersion rate of the pollutant under consideration. Objects inside
the prismcould be sources for the pollutant that are reflected in our
measurement.

The phenomenon we are looking at may not always be as well
understood as in the dispersion case, or we may be looking at a
set of spatial–temporal objects that we know are related to one
another, but we do not know to what extent (or how). In this case,
the space–time prism can be inferred from the data, and the degree
of spatial autocorrelation between the objects – i.e., the size of the
prism – can tell us something about how local the phenomenon
at hand is. Consider the example of recording exhaust fumes
produced by cars moving through a city (see Section 5 for details):
A cluster of peaks in fumes exhausted by different cars may point
to a local reason such as a speed bump,whereas non-clustered data
would attribute the peaks to non-spatial reasons such as different
driving styles or vehicle types.

4. An ontology design pattern for the space–time prism

In the following, we introduce an ontology design pattern
for the space–time prism as one of the central concepts in
time geography, based on the discussion in Section 3. We also
demonstrate the pattern’s compatibility with different existing
ontologies and design patterns that define different kinds of
interactions between the spatial and temporal dimensions.

4.1. Motivation

Location in space–time allows us to ask many interesting
questions concerning the nearness and relatedness of objects in
space, as discussed in the previous section. In order to utilize
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(a) Predefined prism. (b) Inferred prism.

Fig. 3. Predefined (a) and inferred (b) space–time prism for data integration.
this potential, a formalization is required that is both rigorous
enough to support the required mathematical operations, yet
flexible enough to work on a broad range of existing datasets.
Ideally, the pattern introduced here should allow for a generic
query design that supports different types of control points. These
control points have a spatial–temporal position and associated
attribute data [19]. In order to have a rigorous framework for the
spatial–temporal calculations, yet remain flexible concerning the
data representation, the space–time prism pattern presented here
is based on Miller’s [20] measurement theory for time geography
and the semantic trajectories pattern introduced by Hu et al. [19].
Using a generic pattern lets applications hook into the pattern
and then apply the queries defined at pattern level. The pattern
therefore has to cover the elements that are required to calculate
whether a space–time object is located inside a space–time prism
or not.

4.2. Rationale and competency questions

For the purpose of data integration, it is sufficient to limit the
space–time prism to the cases of single and double cones, as shown
in Fig. 3. We limit this initial work to these cases for simplicity,
though future work will attempt to extend this to more complex
space–time concepts.We can thus reduce the pattern to the control
point at its center, as well as the temporal (i.e., the tips of the
cones) and spatial (i.e., the cone’s diameter) extents. We limit
the pattern to two-dimensional locations, both for simplicity and
because three-dimensional location data are quite rare in theWeb
of Data.

In order tomaximize flexibility in the application of the pattern,
we do not restrict the thematic attributes of control points here.
Likewise, we do not make any assumptions about how an attribute
under consideration is related to the diameter of a cone. In classical
time geography, that attribute would bemaximum travel velocity;
we discuss other examples in Section 5. We believe that both the
kinds of thematic attributes and their relationship to the diameter
of the cone are too application-specific to restrict here.

Based on this rationale, datasets modeled according to the
proposed pattern will be able to answer the following questions.
They have been phrased around application examples to better
illustrate the use cases for the pattern:

Question 1. Given a series of GPS trajectories, which control points
are spatially–temporally close to a given control point, X?

This question addresses the use case of obtaining control points
from a predefined prism.

Question 2. Given a series of measurements in a sensor network,
which measurements are spatially–temporally related to the toxic
plume that was released at control point X?

This question covers the use case of inferring a prism based on
the attribute values associated with the control points (i.e., when a
dispersion rate is unknown).
Question 3. Given an object O that has been observed at control point
X1 at time t1, and at X2 at t2, what are the possible locations for O at
t3 (assuming constant speed)?

Question 4. Given n objects O1 . . .On that have been observed at
control points X1 . . . Xn at times t1 . . . tn, where and when can those
objects meet (assuming constant speed)?

The last two competency questions cover use cases from
classical time geography, allowing us to answer questions about
possible future locations of single objects and potential meeting
points of multiple objects.

4.3. Ontology design pattern

Fig. 4 gives a schematic overview of the space–time prism
pattern. It builds on elements defined in the semantic trajectories
pattern [19] shown in gray; yet not all elements defined there are
necessary to define the space–time prism. It is especially notable
that the trajectory itself is not required for the data integration case
we focus on here. While trajectories may have attributes that can
serve as a basis for data integration,we focus on control points here
and defer the integration of trajectory-based data through bundles
(see Section 2) to future work.

For the formalization, we use the Web Ontology Language
(OWL) and provide the axioms in Description Logic (DL) nota-
tion [47] both for readability and to be in line with the formaliza-
tion of the trajectories pattern [19]. It makes use of the OWL-Time
ontology [48] (prefix time) and the Points of Interest ontology de-
sign pattern4 (prefix poi), which, when used in combination, allow
for a flexible way to handle the temporal and spatial aspects of a
control point. The design of our pattern is based on the definition
of the space–time prism through:

1. the control point that the prism centers around (see Ax. (1a));
2. the points in time that define the tips of the cones (see Ax. (1b)

and (1c));
3. the diameter of the prism, defining its spatial extent (see

Ax. (1d)); and
4. the attribute that defines the diameter of the prism (seeAx. (2)).

The following DL axioms define the interplay between these
elements:

Prism ⊑≤ 1centeredAt.ControlPoint (1a)
⊓ ≤ 1time : hasBeginnnig.time : TemporalThing (1b)
⊓ ≤ 1time : hasEnd.time : TemporalThing (1c)
⊓ ≤ 1hasDiameter.diameter (1d)

Diameter ⊑ ∃defines−.Attribute. (2)

The attributes are deliberately undefined in order to maintain
maximum flexibility concerning the attributes that can be used to

4 http://geog.ucsb.edu/~jano/POIpattern.png.

http://geog.ucsb.edu/%7Ejano/POIpattern.png
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Fig. 4. Schematic overview of the space–time prism pattern.
define the diameter. For the control points, we adopt the notion
introduced byHu et al. [19] (they refer to the concept as a fix, which
alludes to the language used in GPS positioning; we refer to the
same concept as a control point here):

ControlPoint ⊑ ∃tTime.OWL − Time : Temporal Thing
⊓ ∃hasLocation.Position
⊓ ∃hasAttribute.Attribute

⊓ ∃hasFix−.SemanticTrajectory. (3)

In classical time geography, the attribute that defines the
diameter of the prism is maximum travel velocity; we generalize
this to any observable phenomenon that is at least at ordinal scale
to enable the calculation of spatial autocorrelation.5 The separation
of the beginning and end of the time span covered by the prism
supports all cases where it is not desirable to have the control
point in the middle of the time span. In the most extreme cases,
this allows us to ‘‘search only backward’’ in a cone pointing back
in time to look for control points that have influenced the control
point under consideration. Likewise, we can ‘‘look only forward’’
(a cone pointing forward in time) to query for control points that
have been influenced by the control point under consideration.

4.4. Integrated querying across different spatial–temporal models

The Position element (see Fig. 4) adopted from the semantic
trajectories pattern is deliberately underspecified to support
different encodings, such as the W3C Basic Geo Vocabulary for
simple lat/lon points in WGS84,6 or the GeoSPARQL ontology,
building on the OGC simple features model to support any kind of
vector geometry [51]. Likewise, it is possible to replace the control
point in the pattern with different notions of spatial–temporal
entities, such as events [52]. As long as it is possible to calculate
Euclidean distance between different control points (i.e., distance
in space–time), we can address the two cases of predefined and
inferred prisms discussed in Section 3.2. Fig. 5 illustrates these two
cases: If the beginning, end, and diameter of the prism (shown
in blue) are known, we can calculate which other control points
are spatial–temporally located within the prism (shown in red).

5 While it may be possible to apply local indicators of spatial association for
nominal scale data [49,50], we leave this for future work.
6 http://www.w3.org/2003/01/geo/.
Fig. 5. Query pattern building on the space–time prism. The parts shown in red can
be inferred from the parts shown in blue, and vice versa. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Conversely, if we know which control points are related, we can
infer the spatial–temporal dimensions of the space–time prism.

By introducing the space–time prism as an additional element
that is defined by the existing spatial and temporal dimensions
specified by the respective pattern, the proposed pattern does not
break other existing patterns, such as DOLCE’s [37] participation
pattern (see Fig. 2). The same goes for the setting pattern [53] that
defines a spatial and temporal scoping for a setting. It has been
developed with a focus on historical gazetteers, where the actual
temporal scope of a period often depends on a spatial component
(such as the Bronze Age, which is defined differently depending on
region). In this case, the same scoping mechanism also works for
the space–timeprism, again introducing it as an additional element
that can be used for querying and reconciliation.

5. Applications

The ontology design pattern introduced in the previous section
can easily be turned into a query pattern by replacing parts
of the pattern with variables. In the following, we introduce
two applications for this query pattern, one from environmental
modeling (Section 5.1) and one from cultural heritage (Section 5.2).
In Section 5.3, we briefly discuss other potential applications.

http://www.w3.org/2003/01/geo/
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Fig. 6. Map showing a sample enviroCar trajectory, consisting of space–time control points and the connecting edges. Color scale of the control points represents the
modeled CO2 emissions. Additional variables, such as speed or number of revolutions per minute are also collected but not represented here. Basemap by Stamen Design,
under CC BY 3.0. Data by OpenStreetMap, under ODbL. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
5.1. EnviroCar

EnviroCar7 is a community-based data collection platform for
gathering vehicle-borne sensor data and producing environmental
information [54]. EnviroCar uses standard Bluetooth OBD-II
adaptors,8 which are connected to a vehicle via the standard
OBD connection that allows it to read parameters such as speed
or revolutions per minute. From there, an Android smartphone
records the data at regular time intervals, augmented with GPS
information from the enviroCar smartphone app. The enviroCar
app automatically calculates further information such as fuel
consumption and CO2 emissions, which can then be uploaded to
the enviroCar platform server for subsequent analysis and sharing
with the wider research and citizen science communities (see
Fig. 6).

Understanding the spatial dynamics of fuel efficiency is a
major area of research in environmental sustainability and road
and vehicle efficiency studies. Similarly, the growing use of geo-
sensor networks for air quality assessment (among other issues)
requires integration of many disparate data sources, including
mobile and static sensors. This provides an ideal use-case for the
proposed space–time prism ontology design pattern. For example,
suppose researchers working with the enviroCar data would like
to determine whether a particularly high emissions reading is
due to location (i.e., because there is a steep incline, intersection,
or speed bump along the road) or largely location independent
(i.e., simply due to vehicle type or driving style). Using the concept
of a space–time prism presented in Section 3, it is possible to
determine this.

For each control point in a series of enviroCar trajectories, we
can compute the spatial autocorrelation between the control point
and all other control points in the data. This determines the diame-
ter of the space–time prism around each control point.9 From here
we get a relative measure of the degree of clustering in the data:
very small space–time prisms indicate spatial effects (i.e., some

7 https://www.envirocar.org.
8 http://www.obdii.com/background.html.
9 This computation can be accomplished in several ways, such as by using

AMOEBA [55].
environmental condition leading to increased emissions), whereas
larger space–time prisms indicate a lack of spatial effects (i.e., pos-
sibly driving style). This result can then be used to validate said
data by intersecting local environmental sensors from a sensor
network with the space–time prisms generated from the enviro-
Car data. Observations can be augmentedwith sensor information:
‘‘show me all sensor measurements in the vicinity of an enviroCar
emission peak’’, or compared with sensor observations: ‘‘show me
all enviroCar control points that deviate strongly from local sensor
network observations’’.

The following example is based on a measurement obtained
from the enviroCar Linked Open Data API.10 It shows a single
control point – in this case, an observation based on the W3C
Semantic Sensor Networks Ontology [56] – along with the
measured CO2 value at a given sampling time.
@base <https://envirocar.org/api/stable/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix dul: <http://www.loa-cnr.it/ontologies/DUL.owl#> .
@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

# this is a control point and its location in space:

<measurements/5207d871e4b058cd3d669c36> a ssn:Observation ;

dul:hasPart <measurements/5207d871e4b058cd3d669c36#CO2> ;

geo:lat "51.954"^^xsd:double ;

geo:lon "7.65095"^^xsd:double .

# the remaining triples define an attribute (CO2 output)
# of the control point, and the control point’s time stamp:

<measurements/5207d871e4b058cd3d669c36#CO2>

ssn:observationResult

<measurements/5207d871e4b058cd3d669c36#CO2_out> ;

ssn:observationSamplingTime

<measurements/5207d871e4b058cd3d669c36#time> ;

ssn:observedProperty <phenomenons/CO2> .

10 See http://envirocar.github.io/enviroCar-server/lod/.
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Fig. 7. Predefined space–time prismquery pattern for the enviroCar example.With
the properties set (shown in blue), we can calculate which other control points are
inside the prism (shown in red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

<measurements/5207d871e4b058cd3d669c36#CO2_out>

a ssn:SensorOutput ;

ssn:hasValue

<measurements/5207d871e4b058cd3d669c36#CO2_value> .

<measurements/5207d871e4b058cd3d669c36#CO2_value> a dul:Amount ;

dul:hasDataValue "0.004162327586206897"^^xsd:double ;

dul:isClassifiedBy <phenomenons/CO2#unit> .

<measurements/5207d871e4b058cd3d669c36#time> a dul:TimeInterval ;

dul:hasDataValue "2013-08-11T18:10:49Z"^^xsd:dateTime .

Taking the dispersion rate of CO2 into account, we can match
the query pattern for the predefined space–time prism from
Section 4.4 to this dataset, as shown in Fig. 7. In this example, we
are temporally searching the 10 min before and after the control
point respectively, and set the diameter for the prism to 100 m:

base <https://envirocar.org/api/stable/>

prefix geo: <http://www.opengis.net/ont/geosparql#>

prefix geof: <http://www.opengis.net/def/function/geosparql/>

prefix dul: <http://www.loa-cnr.it/ontologies/DUL.owl#>

prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

prefix units: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT * WHERE {

# specify the parameters for this search:

BIND ("600"^^xsd:integer AS ?duration) . # duration (in secs)

BIND ("100"^^xsd:integer AS ?diameter) . # prism diameter (in m)

# this is the center of our prism

<measurements/cp1> geo:hasGeometry ?geometry1 ;

dul:hasPart ?part1 .

# fetch its location

?geometry1 geo:asWkt ?wkt1 .

# fetch the timestamp for the CO2 observation at the control point

?part1 ssn:observationSamplingTime ?timeInstance1 .

?timeInstance1 dul:hasDataValue ?ts1 .
#get the same data for other control points

?cp geo:hasGeometry ?geometry2 ;

dul:hasPart ?part2 .

?geometry2 geo:asWkt ?wkt2 .

?part2 ssn:observationSamplingTime ?timeInstance2 .

?timeInstance2 dul:hasDataValue ?ts2 .

# we make the simplifying assumption here that both samplings
have occurred on the same day and in the same time zone. This can
relatively easily be extended to any arbitrary sampling times

BIND (((hours(?ts1) * 3600) + (minutes(?ts1) * 60) +

xsd:integer(seconds(?ts1))) AS ?secsOfDay1).

BIND (((hours(?ts2) * 3600) + (minutes(?ts2) * 60) +

xsd:integer(seconds(?ts2))) AS ?secsOfDay2).

# specify the ‘‘tips’’ of the cones− 10minutes (= 600 secs) into the
past from ?secsOfDay1

BIND ((?secsOfDay1 - ?duration) AS ?prismStart) .

#...and 10 minutes in the future:

BIND ((?secsOfDay1 + ?duration) AS ?prismEnd) .

# figure out at which point of the timespan we are to calculate the
diameter of the prism at this point in time (‘‘disc’’)

BIND ((abs(?secsOfDay1 - ?secsOfDay2)) / ?duration AS ?section) .

# calculate disc diameter

BIND (?diameter * ?section AS ?discDiameter) .

# filter the results to those within the timespan of the prism

FILTER (?secsOfDay2 > ?prismStart) .

FILTER (?secsOfDay2 < ?prismEnd) .

# filter results to the locations that are within the ‘‘disc’’

FILTER(geof:distance(?wkt1, ?wkt2, units:metre) < ?discDiameter)

}

The query strategy consists in (1) querying all control points
that fall within the given time frame; (2) limit this selection to all
control points that fall within the cylinder defined by the diameter
of the space–time prism; and (3) for each remaining candidate,
calculate the disc slice [20] of the prism at the given point in
time and check whether the candidate control point is inside the
disc. The enviroCar example shows that the intuitive notion of a
space–time prism as defined in Section 4 can easily be turned into a
query that yields the correct results, i.e., it returns all control points
that are spatially and temporally contained in the 3D cone defined
by the dispersion rate of CO2.

5.2. Federated queries for cultural heritage data

The enviroCar use case shows that space–time prisms can
be used to query the Web of Data with the technologies
underlying the Linked Data approach. While this is certainly
convenient, the combination of spatial–temporal reasoning with
semantic reasoning (e.g., subsumption reasoning) can already be
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Fig. 8. Forward-facing space–time cone approximating the progress of the Allied forces in the 10 weeks after D-Day.
accomplished using existing technologies (e.g., GeoSPARQL, W3C
Geo, and OWL-Time, etc.). The strength of this approach, therefore,
comes from the direct application of intuitive time geography
concepts to distributed datasets.

In order to further illustrate the capabilities of our proposed
design pattern, we introduce a use case that applies a query based
on space–time prisms to cultural heritage data. More specifically,
we are looking for photos that were taken during the first few
weeks after D-Day – the invasion of Allied forces in Normandy,
France – on June 6, 1944. In the weeks following D-Day, the Allied
forces gained control over a coastal zone of about 100 miles in
diameter, which ultimately led to the restoration of the French
Republic and was a major contribution to the Allied victory in
World War II. In terms of time geography, our query is based
on a forward-facing cone, with the tip set to the landing site in
Normandy, a duration of 10 weeks, and a diameter of 100 miles
(see Fig. 8).

Retrieving photos inside this cone requires information from
the following Linked Data sources:
• DBpedia11 provides information about D-Day, including the

date the operation started and coordinates for the location of
the landing.

• Europeana12 [1] provides metadata about cultural heritage
artifacts from a large number of European museums, including
the photos we are looking for.

• GeoNames13 provides coordinates and the administrative
hierarchy for all places referenced from the Europeana data.

• GEMET,14 the GEneral Multilingual Environmental Thesaurus,
provides the classification scheme for artifacts in Europeana.

GEMET not only provides us with the correct identifier for pho-
tographs,15 but also with the corresponding subsumption hierar-
chy. The skos:broader and skos:narrower relationships al-
low us to include aerial images in our query, which are a narrower
type of photograph in GEMET. Likewise, we can include all nar-
rower types of photographs at the same time using SPARQL 1.1
property paths [57]:
prefix skos: <http://www.w3.org/2004/02/skos/core#>
prefix gemet: <http://www.eionet.europa.eu/gemet/concept/>
prefix edm: <http://www.europeana.eu/schemas/edm/>

SELECT ?artifact WHERE {
?artifact edm:hasMet ?category .
?category skos:narrower* gemet:6205 .

}

11 See http://dbpedia.org.
12 See http://europeana.eu. SPARQL endpoint available at
http://europeana.ontotext.com/sparql.
13 See http://geonames.org.
14 See http://www.eionet.europa.eu/gemet/.
15 See http://www.eionet.europa.eu/gemet/concept/6205.
The following query demonstrates how to combine results from
different SPARQL endpoints in a federated query. It selects all
places from a local store that are within 10 miles of the landing
location of the invasion of Normandy, retrieved from DBpedia.

prefix wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#>

prefix dpbo: <http://dbpedia.org/ontology/>

prefix geof: <http://www.opengis.net/def/function/geosparql/>

SELECT * WHERE {

?place wgs84:geometry ?location .

SERVICE <http://dbpedia.org/sparql> {

<http://dbpedia.org/resource/Invasion_of_Normandy>

wgs84:geometry ?landing ;

dpbo:date ?date . }

FILTER(geof:distance(?landing, ?location, units:mile) < "10")

}

Combining such federated queries and semantic reasoningwith
the space–time prism query pattern introduced in Section 5.1
would follow the same approach as in the previous section: first
filter temporally, then filter spatially, and for each of the remaining
candidates, calculate the slice radius at its position in the cone to
determine whether it is inside.16 This example demonstrates that
the intuitive notion of space–time prisms and the corresponding
pattern enable powerful spatial–temporal semantic information
retrieval across distributed data sources.

The main limiting factor for this kind of query is data
availability. The particular example illustrated above, for example,
does not bear any meaningful results on the listed data sources
yet, since the spatial and temporal granularity of information in
the datasets is not high enough. Photographs in Europeana are
only annotated with the year they were taken, and mostly do not
contain information about the location at which they were taken.
Moreover, some of the datasets that contain relevant data for such
queries, such as the Library of Congress Linked Data Service17 do
not yet offer a SPARQL endpoint.

5.3. Other applications

The two examples discussed above illustrate the utility of our
approach for environmental monitoring and retrieval of artifacts.
However, a number of applications in other – and potentially very
different – domains can benefit from this approach. One such

16 See http://carsten.io/photoquery.sparql for a complete example.
17 http://id.loc.gov.
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example is the spatial@linkedscience18 effort, which provides an
access point to all papers ever published in the major Geographic
Information conferences [58]. In this context, the pattern could be
used to track the reach of a particular research group through space
and time, with the publications as control points and measures of
topic similarity as the spatial autocorrelationmetric. By examining
the changing shape of the space–time prisms, we can get an idea
of the spread rate and reach of particular localities (universities).

In previous work, we have shown how to semantically reason
over historic map contents using Linked Data [59]. Adding time
geography based queries to this approach would allow us to query
for artifacts that potentially contain information about persons or
events based ondocumented appearances. Other examples include
the collection of publicly available pictures taken around a given
event, the historical events that have influenced a book or a piece
of art, and potentially even the identification of potential witnesses
after a crime based on cell phone locations.

6. Conclusions

In this paper, we presented an ontology design pattern for
space–time prisms, a concept from time geography, and demon-
strated its utility using two real-world examples. The pattern is
based on Miller’s measurement theory for time geography [20]
and facilitates querying across, and integration of, disparate data
sources through a re-conceptualization of the space–time prism.
Building on previous work on semantic trajectories [19], the pat-
tern is formalized in theWebOntology Language to facilitate its ap-
plication with data following Linked Data principles. While other
technological approachesmay yield the same or similar results, the
pattern enables the use of an intuitive conceptual framework in an
existing and well-established technology stack.

Time geography provides a rich array of concepts, models, and
rigorous analytical definitions of spatial–temporal entities with
which to understand space–time interactions. We have demon-
strated that the space–time prism is a viable tool to explore the re-
lationshipswithin and between Linked Data sources. Our approach
goes beyond previous work on time geography as it shows that the
space–time prism can be used as a tool for data integration and
exploration, while at the same time leveraging the decentralized
semantic reasoning capabilities of the Linked Data approach.

One possible extension to this framework is the use of spatial
cross-correlation measures to define inferred space–time prism
diameters. This would allow queries across different data types
to be integrated within the approach presented here. Examples
where this might be useful include questions such as ‘‘where are
high CO2 emissions associated with infant mortality rates?’’, or ‘‘at
what temporal lag do predator and prey cycles operate?’’.
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