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Abstract In many countries, winter maintenance is a requirement to keep public life
going throughout the cold season. This paper investigates the optimization of salt
spreading routes in Denmark in terms of service time and cost. It looks at salting
as a capacitated arc routing problem and proposes a greedy randomized adaptive
search procedure to this end. At the core of the proposed approach is a heuristic
algorithm based on simulated annealing that improves the initial route by searching
for alternatives within a predefined search space, taking into account a number of
constraints and criteria at each iteration of the procedure. The performance of the
optimization approach is tested on three different existing service routes, where it is
shown to reduce route length by an average of 8.7% and service time by an average
of 9.5%.

Keywords Capacitated Arc Routing Problem, Simulated Annealing, Route Opti-
mization

1 Introduction

The nordic winter weather requires the authorities to remove snow and take measures
against road icing in order to maintain accessibility and traffic safety. In Denmark,
The Danish Road Directorate (Vejdirektoratet, VD) and the municipalities are re-
sponsible for these tasks. This paper investigates the potential for optimisation of
the winter maintenance services in terms of service time and cost. We focus on salt-
ing, as this is by far the most common winter road maintenance activity (Knudsen
et al., 2014). Planning of winter maintenance activities consists of various types of
decision-making problems at the strategic (facility locations such as plants, depots,
material storages), tactical (fleet size, fleet combination and other vehicle/material
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related issues) and operational (determination of routing and scheduling of each ve-
hicle) levels (Bodin et al., 1981). These levels are interconnected, but the strategical
and tactical levels are often bound by a number of inflexible circumstances, so that
the largest potential for optimisation is in the vehicle routing at the operational level.

This routing problem is based on a set of arcs that a fleet of vehicles has to
traverse. The objective is to determine feasible routes for each vehicle with respect
to the cost variables. Since one of the cost variables in road salting is the salt
capacity on a vehicle, this kind of vehicle routing problem is a Capacitated Arc
Routing Problem (CARP) (Eiselt et al., 1995). Since CARPs fall into the class of NP-
hard, non-deterministic polynomial-time hard problems (Golden and Wong, 1981),
heuristic procedures are required in order to approach a near-optimal solution within
acceptable time. This paper applies an approach based on Simulated Annealing (SA)
for this purpose.

Fig. 1 Winter maintenance route K72, West of Copenhagen, with depot location in Roskilde.

Figure 1 shows one of the winter maintenance routes served by VD. During the
optimization process, the route itself, shown in green, cannot be changed due to
service contracts that VD and the municipalities have with private road maintenance
firms, which they can bid on in public tenders. The optimisation is therefore limited
to the routing between the depot and the route, the order in which the green segments
are serviced, as well as the deadheading during turns and between different segments
of the route, during which no salt is brought onto the road. Despite these limitations
for route optimisation, manual inspection of the existing routing instructions has
shown potential for optimisation due to the fact that the current routing instructions,
including deadheading and getting from depot to route, have been created manually.
The remainder of this paper will show that despite these limitations for optimisation,
a heuristic approach based on simulated annealing could reduce route length by an
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average of 8.7% and service time by an average of 9.5% across a set of three test
routes.

The next section introduces relevant related work. Section 3 formalizes the prob-
lem, followed by an introduction of the heuristic algorithm in Section 4. Section 5
outlines the implementation and presents the achieved results, followed by conclud-
ing remarks in Section 6.

2 Related Work

Scientific research on winter maintenance in terms of road salting and snow removal
first began in the 1960s. In the 1980s and 1990s, winter maintenance as Arc Routing
Problems (ARPs) got more attention (Lemieux and Gampagna, 1984, Evans and
Weant, 1990, Goode and Nantung, 1995, Haslam andWright, 1991, Gendreau et al.,
1992). Eglese (1994) conducted research with the objective to determine the most
cost-effective management of salt spreading. The approach was based on a heuristic
algorithm with respect to practical constraints such as service time, deadheading
time, vehicle capacities, multiple depot locations, etc. The heuristic procedure was
initiated with a construction algorithm, first introduced by Male et al. (1977), and an
SA heuristic was then used for improvement. The study showed that the use of SA
improved the initial results (Eglese, 1994).

The idea of SA was introduced by Metropolis et al. (1953) based on the cooling
of molten materials, where the cooling rate determines the structural properties
of the solid mass. Metropolis et al. (1953) proposed the use of SA in order to
simulate the physical system’s cooling process and change in energy until a state
of thermal equilibrium is obtained. This is ensured with the stopping conditions of
either a minimum temperature or a maximum number of iterations, thus retaining the
possibility of accepting a non-improving solution in order to escape local minima
while searching for a global minimum. Kirkpatrick et al. (1983) proposed the use
of SA to search for near-optimal solutions in the context of routing. They proposed
that the search be carried out in a wide solution space with respect to decreasing
probability depending on the progresses of the algorithm by moving arcs between
the routes.

The Capacitated Arc Routing Problem (CARP) has been defined based on a
connected undirected graph G = (N, A,C,Q), where N is a set of nodes, and A is a
set of arcs. C denotes a cost vector, indicating the cost of traversing each arc, and
Q is a corresponding demand matrix, indicating the demand for each arc. Given a
number of identical vehicles with capacity W , the problem is to find a number of
tours so that 1) Each arc with positive demand is serviced by exactly one vehicle, 2)
The sum of demand of those arcs serviced by each vehicle does not exceed W , and
3) The total cost of the tours is minimized. (Golden and Wong, 1981).

Existing heuristic algorithms for CARP can be divided into construction methods
and improvement methods. Simple construction methods include the Construct-
Strike Algorithm (Christofides, 1973, Pearn, 1989), which is one of the simplest
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CARP construction methods. This method progressively constructs and removes
feasible routes from the original graph without disconnecting the graph until no
more feasible routes can be determined. The Path Scanning Algorithm (Bodin et al.,
1981) uses a set of five arc selection rules. This is done by selecting one rule at a
time and determining the optimal routes for each of the five rules. This method was
extended by Pearn (1989), who suggested random use of the rules and then selecting
the optimal solution. Furthermore, Bodin et al. (1981) proposed an Augment-Merge
Algorithm for CARP which heuristically creates feasible routes based on incomplete
routes. Using the same method, Chapleau et al. (1984) proposed the Parallel-Insert
Algorithm, which routes in parallel, while balancing the costs of the different routes.
Moreover, there are a number of heuristics that follow a two-phase construction
approach by either clustering route segments first and then creating routes from
those clusters, or vice versa (Eiselt et al., 1995).

The heuristics for these construction methods are problem-dependent and often
too greedy. This can cause trapping in a local minimum, thus failing to obtain the
global minimum. To avoid this, there is a need for meta-heuristics that are not greedy
and can accept a temporary solution deterioration. This allows exploration of the
solution space in order to find a better solution towards the global minimum. The
meta-heuristics are improvement methods for an initially constructed solution and
there are a number of meta-heuristics for various problem statements within the
CARP. In this paper, we use a two-phase algorithm consisting of a construction
phase that generates an initial route and a local search phase, where an SA-based
meta-heuristic is used to improve the initial route. While we focus on an SA-based
approach in this paper, recent work on the CARP also employs genetic algorithms
(Arakaki and Usberti, 2018, Kurniawan et al., 2015).

3 Problem Formulation

In order to generalise the approach presented in this paper beyond salt spreading in
Denmark, the development will be based on the following problem formulation:

Given a graph with both directed and undirected arcs, some of which may not
require service but can be used for deadheading, and given a number of vehicles
with different capacities, find a total least time set of routes that start and end at
the concerned depot, while satisfying the distance, capacity, time and frequency
constraints.

An existing exact approach to this kind of combinatorial optimization is integer
linear programming (Nemhauser and Wolsey, 1988). Integer linear programs (ILPs)
can be solved with existing mathematical solvers, which allow computing globally
optimal solutions for small problem instances.However, since our real-world problem
instances are large and the existing algorithms for solving ILPs have an exponential
worst-case runtime, we developed a heuristic method based on simulated annealing.
Nevertheless, in the following, we define the problem in the form of an ILP.
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The problem formalization is based on a model proposed by Golden and Wong
(1981) and modified by Haghani and Qiao (2001). The parameters, variables and
indexes used are shown in Table 1. The objective is to minimise the total travel
distance (and by that, the total time, observing speed limits and assuming different
maximum speeds for salting and deadheading), for servicing all required arcs with
the vehicle(s) in use, including deadheading:

Minimize
k∑

p=1

∑
i, j∈A

Ci jX
p
ij (1)

Notation Definition Unit
A The network’s set of arcs [number]

Ci j Distance between the nodes [m]

D The maximum total distance a vehicle can cover [m]

i, j Node index [number]

F
p
i j

This decision variable ensures the elimination of sub-tours and is
assigned to all arc (i, j) and vehicle p in the direction i to j. [number]

Gi j
The difference between deadheading time and servicing time
for an arc (i, j) in the direction i to j

[minutes]

k The number of available vehicle(s) for service [number]

L
p
i j

This variable indicates if an arc needs to be serviced
and L

p
i j = 1 if an arc (i, j) has to be serviced by

a vehicle p in the direction i to j

[number]

n The total number of nodes in the network [number]

Ni j
The number of times an arc (i, j) in
the direction i to j needs to be serviced [number]

p Vehicle index [number]

Qi j
The demanded salt for an arc
(i, j) in the direction i to j

[
m2 ∗

kg

m2

]
T The maximum total time a vehicle can cover [minutes]

Ti j
Time for travel without servicing (deadheading), arc
(i, j) in the direction i to j

[minutes]

W Vehicle capacity [kg]

X
p
i j

This variable indicates if an arc is "used" and X
p
i j = 1 if an

arc (i, j) is used by vehicle p for either servicing
or deadheading in the direction i to j

[number]

Table 1 Parameters, variables and indexes used in the problem formalization.

The minimisation has to be carried out with respect to the following constraints. The
vehicle capacity constraint ensures that the vehicle capacity is not exceeded:
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i, j∈A

Lp
ijQi j ≤ W ∀p = 1..k (2)

The continuity constraint ensures that the vehicle enters and exits a node every time
one is used, thus maintaining connectivity:

n∑
r=1
r,i

Xp
ri −

n∑
r=1
r,i

Xp
ir = 0 ∀i = 1..n p = 1..k (3)

The frequency constraint ensures the service of the demanded arcs. These arcs can
either require service in one direction:

k∑
p=1

Lp
ij + Lp

ji = 1 ∀(i, j) ∈ A (4)

. . . or a finite number of times, Ni j in either direction if the width of the carriageways
exceeds the salting width:1

k∑
p=1

Lp
ij =

∑
Ni j ∀(i, j) ∈ A, Ni j >= 1 (5)

The service/deadheading constraint ensures that the service of an arc can only be
carried out when a vehicle traverses the arc:

Xp
ij ≥ Lp

ij ∀(i, j) ∈ A, p = 1..k (6)

The time constraint ensures that the total travel time is not exceeded:

∑
i, j∈A

Ti jX
p
ij +

∑
i, j∈A

Gi jL
p
ij ≤ T ∀p = 1..k (7)

The distance constraint ensures that the maximum total distance (service and dead-
heading) is not exceeded:

∑
i, j∈A

Xp
ijCi j ≤ D ∀p = 1..k (8)

1 Based on the salting vehicles used in Denmark, we assume a salting width of 8m.
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The sub-tour cancellation constraint ensures the cancellation of sub-tours, which is a
loop of tours without connection or inclusion of the depot, adapted from Golden and
Wong (1981). When the network has at least one arc that requires service, then the
right side of Eq. 9 will have a value greater than 0. To satisfy this equation, the left
side containing the decision (flow) variables must be positive. According to Eq.10,
an arc’s decision variable can only be positive if a vehicle travels the arc. Thereby,
Eq. 9 prevents sub-tours by ensuring that at least one arc which is connected to the
depot is used when traveling.

n∑
r=1
r,i

Fp
ir −

n∑
r=1
r,i

Fp
ri =

n∑
j=1

Lp
ij ∀i = 2..n, p = 1..k (9)

Fp
ij ≤ n2Xp

ij ∀(i, j) ∈ A, p = 1..k (10)

Fp
ij ≥ 0 ∀(i, j) ∈ A, p = 1..k (11)

Due to the computational complexity of solving the equations shown above, a heuris-
tic algorithm has to be developed that finds a near-optimal solution with respect to
those constraints.

4 The Heuristic Algorithm

The heuristic proposed here is adapted fromResende andRibeiro (1997) and based on
the Greedy Randomized Adaptive Search Procedure (GRASP). GRASP consists of
two phases: In the first phase, a feasible solution is generated by aRoute Construction
Algorithm (RCA)which is then improved in the second phase that searches for a better
solution in its neighbourhood using a Simulated Annealing (SA) meta-heuristic to
execute the local search for all the iterations. The aim of the iterative GRASP process
is to reach the global minimum, i.e., to minimize overall salting time.

4.1 Phase One: Route Construction Algorithm

RCA traces a route from the depot by adding arcs incrementally with respect to the
constraints (Section 3) for each iteration until a route is constructed. In every iteration
of RCA, a list of arc candidates, a Restricted Candidate List (RCL), is generated by
evaluating possible arc candidates that meet a greedy evaluation function. Further-
more, these arc candidates must be able to meet the feasibility of the partial solution,
thus enabling arc exchange. This is used by the greedy evaluation function, which
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calculates the change in total cost and only considers the candidates that contribute
with an incremental cost below the threshold value. The selection of candidates from
RCL is random and repeated until a final route is obtained. The cost refers to the
adjusted lengths, which are then adjusted for the traverse time based on the speed
limit. In addition, the arcs with a service demand will be termed the required arcs.

Variable Definition
α The threshold parameter between 0 and 1

Cmax Highest incremental cost
Cmin Lowest incremental cost
E Possible candidate list

NoRoutes The number of developed routes

Table 2 The nomenclature of RCA

The RCA consists of the following steps (see Table 2 for the nomenclature):

Step 1: The shortest distance between each pair of nodes is calculated and NORoutes

is set to 0. The shortest distance can be calculated using Floyd-Warshall’s algo-
rithm (Cormen et al., 1990, pp. 558–565), which computes the shortest distances
between all nodes in the graph.

Step 2: The current node is set to the depot node, partial route termed as no route, partial
cost set to 0, the remaining capacity is set to the capacity of vehicle and the depot
node is set as start node. If all the arcs’ requirements are 0, i.e. no arcs require
service in the network, then the process goes to step 7, otherwise to step 3.

Step 3: The process goes to step 4 if any required arcs are connected to the current node,
otherwise step 6.

Step 4: The RCL with a cost in the range of R = [Cmin,Cmin + α ∗ (Cmax − Cmin)] is
generated. α is a value between 0 and 1.

Step 5: If the RCL contains at least one arc, then a random selection is made and the
selected arcs are added to the partial route. Then, the partial route is updated by
setting it to the current partial route including the added arc and partial cost is
set as partial cost including the cost of the added arc. Furthermore, the remaining
capacity is set to the remaining capacity minus the required capacity for servicing
the added arc. If the added arc has a traverse demand >= 1, then the demand is
reduced by 1. In addition, the current node is set to end node of the recently added
arc and the process returns to step 3, otherwise to step 6.

Step 6: If the addition of the required arc(s) is not possible due to violation of the
constraints, then the shortest return route to the depot has to be determined.
While doing this, the partial route is updated with the shortest return path to the
depot, route cost is set to partial cost including the distance back to the depot and
NORoutes is set to NORoutes + 1. After doing this, the process returns to step 2.
Otherwise, the closest node connected to a required arc that does not exceed the
constraints has to be determined and the shortest distance calculated. Then, the
partial route is updated to the partial route including the distance to the closest
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node, route cost is set to partial cost including the cost of the path to the closest
node and the current node is set to the closest node and the process can go back
to step 4.

Step 7: The solution is a set of routes that fulfills the demand of the required arcs in the
network. NORoutes is set to the total number of solution routes in the network.

4.2 Phase Two: Simulated Annealing Heuristic

The SA process starts with the best overall solution obtained from RCA and looks for
a better one in a predefined neighbourhood. Since SA is a meta-heuristic, it allows
for uphill moves, i.e. moves that generate solutions with higher costs than the current
solution. This enables the process to escape local minima and find better solutions.
The following pseudo-code outlines SA (Rere et al., 2015):

Algorithm 1 The local search
1: procedure Simulated Annealing
2: Select the best solution vector x0 to be optimised. Initialise the parameters:
3: Temperature T , Boltzmann’s constant k, reduction factor c
4: while termination criterion is not satisfied do
5: for number of new solution select a new solution: x0 + δx
6: if f (x0 + δx) < f (x0) then fnew = f (x0 + δx); x0 = x0 + δx
7: else δ f = f (x0 + δx) − f (x0)
8: random r(0, 1)
9: if r < exp(−δ f /kT ) then fnew = f (x0 + δx), x0 = x0 + δx
10: else fnew = f (x0), do
11: end if
12: end if
13: f = fnew
14: Decrease the temperature periodically: T = c ∗T
15: end for
16: end while
17: end procedure

The SA algorithm itself is embedded in a loop of moves of arcs in the route,
followed by the execution of a route improvement algorithm, as outlined in the
following.

The Movements

The movements for the local search are adapted from Pearn (1989), following the
idea of “shuffling” subsets of arcs between two possible routes in order to find a
better solution. This method randomly applies five arc selection rules to then select
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the optimal solution. This is done by defining sets of moves where each contains
every move only once. The randomness is achieved by sequencing the order of the
moves in the sets randomly. Each move of each set is performed for a number of
finite iterations. When all iterations for all moves in one set have been performed,
the process continuous to a different set. Table 3 shows the nomenclature used for
the moves in the following steps.

Variable Definition

Level1
The obtained routes, when the input route is splitting at
2 points and rearranged.

Level2
The obtained routes, when the input route is splitting at
3 points and rearranged.

N1 The number of best Level1 routes.
N2 The number of best Level2 routes.

Routex1 The route from which one or more arcs are removed
Routex2 The route in which one or more arcs are inserted

Table 3 The nomenclature of the movements and the route improvement.

Move 1 moves one arc from Routex1 to Routex2 with respect to the constraints of
the succeeding route by executing the following four steps:

Step 1: First, a candidate list containing arcs that can be moved from one route to another,
is generated. These arcs have to respect the constraints of the route to which they
are moved to. For this move, there are following three categories of such arcs; a)
Both arcs being non-required arcs. b) One of the preceding or succeeding arcs
being a service arc. c) Both arcs being service arcs.
This move can be executed with the preference hierarchy (probability of selection)
of a) followed by b) and then c).

Step 2: For every candidate arc, all the candidate routes, in respect to the constraints, are
determined.

Step 3: Then, an arc is randomly selected from the candidate list in respect to the proba-
bility of selection.

Step 4: For the selected arc, a candidate route is selected randomly, cf. step 2.

Move 2 exchanges a pair of arcs between Routex1 and Routex2 with respect to the
constraints of both routes by executing the following two steps:

Step 1: First, a candidate list containing all pair of arcs that can be exchanged between
two routes is generated by complete enumeration. This is done with respect to the
constraints of both routes.

Step 2: Then, a random selection from the candidate list is made and the move is carried
out by inserting the two arcs in their receptively counter route.

Move 3 exchanges two arcs from Routex1 with one arc from Routex2 with respect
to the constraints of both routes by executing the same steps as in move 2.
Move 4 exchanges three arcs from Routex1 with one arc from Routex2 with respect
to the constraints of both routes by executing the same steps as in move 2.
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Move 5 exchanges three arcs from Routex1 with two arcs from Routex2 with respect
to the constraints of both routes by executing the same steps as in move 2.

The Route Improvement

When a move is executed, a Route Improvement (RI) algorithm is used to generate
a new route, starting and ending at the depot, including the moved arcs. The RI-
algorithm uses the set of arcs obtained from the different moves and works with
one set at a time. When the RI-algorithm has constructed a route, it splits the
route at different points, creating multiple elements. Then, the algorithm changes
the sequence of elements, by moving the elements, creating multiple routes with
different arranged sequence of elements. Among these routes, the cheapest route
with rearranged sequence of elements is the final result of the RI-algorithm, which
then is used in the SA as the result of the move. The steps of the RI-algorithm are as
follows;

Step 1: The RCA, as described in subsection 4.1, is used to create a route that starts and
ends at the depot.

Step 2: The route obtained from RCA is then divided in all possible ways at two points
creating three segments (Level1-analysis). The sequence of these three segments
is then changed and rearranged in all possible ways with respect to the orientation
of the arcs. This step ends with an evaluation of the cost of each route after the
rearrangement.

Step 3: The N1 routes of the Level1-analysis are stored in a Level1-list. Every time a
cheaper route than N1 is found, the list is updated by including the new route.

Step 4: The top N1 routes are then randomly selected from the Level1-list, termed Level2-
routes, and stored as a Level2-list. Each route from this list is then divided in
all possible ways at three points creating four segments, Level2-analysis. The
sequence of these four segments are then changed and rearranged as in step 2.

Step 5: If the Level2-analysis creates a cheaper route, N2, than the routes in the Level1-list,
then the N2-route is used in the Level1-analysis, step 2. If the new Level1-analysis
of the N2-route creates a cheaper route, then a new Level2-analysis is generated,
step 4.

Step 6: The final result is the cheapest route after the performance of Level1- and Level2-
analysis.

The low cost routes for both Routex1 and Routex2 are thereby determined. After
creating the sets of moves, the SA can be performed, consisting of the following
steps and using the nomenclature from Table 4:
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Variable Definition
a The temperature reduction factor

BestCost The lowest cost
BestRoutes The corresponding route to the lowest cost
CurrCost The current cost
CurrRoutes The set of corresponding routes to the current cost
MaxI ter at ion The maximum number of iterations

N The number of iterations at the current temperature (counter)
NI ter at ion The number of ongoing iterations (counter)

Nmax The maximum number of iterations at each temperature
Nmove The maximum number of iterations for each type of move

R A random value between 0 and 1
RCACost The total cost obtained from RCA
RCARoutes The set of routes obtained from RCA
SACost The cost of SA
SARoutes The set of SA routes

T The temperature
∆TC The value of (CurrCost − SACost )

Table 4 The nomenclature of SA

Step 1: Step 1: The values of the parameters; a, Nmax , Nmove, MaxIteration andT have to
be set. In addition, the following parameters have to be; N = 0 and Niteration = 0.
The process continuous to step 2.
The cooling of SA is managed by Nmax and a i.e. for every Nmax , the temperature
reduces by factor a. In addition, the temperature T allows the exchange of the
neighbouring solutions, enabling the heuristic search space, thus the value of T
has to be high.
Furthermore, in this step, a set of moves has to be generated, as described in
section moove.

Step 2: The following conditions have to be set; BestCost = RCACost , BestRoutes =
RCARoutes , CurrCost = RCACost and CurrRoutes = RCARoutes . The process
continuous to step 3.
Here, the route(s) and solution values obtained from the RCA are assumed and
set to be the current and the best route with the related values.

Step 3: The following condition is set; Niteration = Niteration+1. The process continuous
to step 4.
In this step, the overall iteration counter increases by 1.

Step 4: The following condition is set; N = N + 1. The process continuous to step 5.
In this step, the annealing iteration counter increases by 1.

Step 5: The following conditions are set; SACost = the cost of the performed move and
SARoutes = the route obtained after performing themove. The process continuous
to step 6.
In this step, the cost and set of route(s) of the move are set as the SA values.

Step 6: ∆TC = CurrCost − SACost is calculated and depending on the result, the process
continuous to either step 7 or step 8.
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In order to assess the solution obtained after a move, the difference between the
current cost and the SA cost has to be calculated.

Step 7: The following conditions are set if ∆TC >= 0: CurrCost = SACost &
CurrRoutes = SARoutes and the following conditions are set if SACost <
BestCost , BestCost = SACost and BestRoutes = SARoutes . The process con-
tinuous to step 9.
Here, based on the evaluation of the difference between the current cost and the
SA cost a number of conditions are set. In case of the difference being greater or
equal then 0, the solution of SA is better the current solution. At the same time,
the values of SA are set as the best values, if the cost of SA is less than the cost of
the best solution.

Step 8: The following conditions are set in case of ∆TC < 0 and exp(∆TC/T) > R;
CurrCost = SACost and CurrRoutes = SARoutes . The process continuous to step
9.
In contrast to step 7, this step deals with current solutions being worse than the SA
solutions. If so, the non-improving SA solutions have to, based on the probability
function, either be accepted or rejected. As ∆TC 7→ 0, the chance of the non-
improving SA solutions being accepted increases. At the same time, as T 7→ 0 the
probability of acceptance decreases.

Step 9: The following conditions are set if N = Nmax ; T = a ∗T and N = 0. The process
continuous to step 10.
If the maximum number of iterations at the current temperature has been reached,
the temperature is reduced by a and the N counter is set to 0

Step 10: If NIteration = MaxIteration, the algorithm process ends. Otherwise, the process
continuous to step 11.
If the total number of ongoing iterations has reached the maximum number of
iterations (the algorithm’s stop condition), then the best overall solution of the
iterations is the final solution.

Step 11: If NIterationMOD(5 ∗ Nmove) = 0, then a new set of moves has to be generated
and the process returns to step 3. Otherwise, the process continuous to step 12.
If the number of ongoing iterations has reached five times the maximum iterations
for each type of move, then all solutions for that set of moves have been searched.
Since the Niteration has not reached the number of maximum iteration of the
algorithm, then a new set of moves can be assessed.

Step 12: If NIterationMODNmove = 0, then the type of move, in the same set of moves,
has to be updated and the process returns to step 3. If that is not the case, the
process still returns to step 3.
Here, it is determined whether there has to be a change in the type of move or if
the algorithm has to run the next iteration of the same type of move.

The best overall solution becomes the final solution when one of the stop condi-
tions has been reached.
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5 Implementation and Results

In order to implement and test the approach outlined in the previous sections, three
of VD’s winter maintenance routes have been modeled based on a traffic direction-
based schema. This model is an abstraction of vehicle driving directions rather than
physical objects (Ruas and Gold, 2008, p. 622). Figure 2, shows an example in which
the northern carriageway is represented as a single line due to same direction lanes
and the southbound carriageway is represented by five modeling objects based on
their traffic directions; off-ramp, on-ramp, right-turn, left-turn and ahead flow.

Fig. 2 An example of a traffic direction-based model (Ruas and Gold, 2008, p. 623).

The data for the three routes (and their vicinity; see Figure 3 for an example) were
obtained from VD’s road management system2 and, after extensive cleaning and
manual fixing of disconnected arcs, translated to the traffic direction-based schema.
RCA and SA have then been implemented in Python to work on this model.

2 See http://vejman.dk and https://trafikkort.vejdirektoratet.dk



Route Optimisation for Winter Maintenance 15

Fig. 3 A maintenance route with neighbourhood, obtained by clipping a buffered convex hull.

The three test routes used for evaluation of the approach are shown in Figures 1
and 4, respectively. After some experiments, the optimization procedure was run
with an initial temperature T of 100, a temperature reduction factor α of 0, 995, a
maximum number of iterations for each type of move Nmove of 1000, a maximum
number of iterations at each temperature of 300, and an overall maximum number of
iterations of 125.000. The SA progress with these parameters for each route is shown
if Figure 5. In addition to a fixed salting width of 8m and the arcs’ respective speed
limits, the evaluation is based on a maximum speed of 80 km/h when deadheading,
30 km/h when salt spreading the ramps and 70 km/h when salting elsewhere.

Fig. 4 Winter maintenance routes K18 and K20.

The optimization produces significantly shorter routes for all three routes, despite
the fact that themaintenance route itself was fixed and optimizationwas only possible
in the deadheading and in the order of the segments of the maintenance route. For
test route K18, the route length was reduced by 6, 3% and service time by 7, 1%.
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Fig. 5 SA progress for the three test routes, with the blue line indicating the route length before
optimization, the gray line indicating the route length at the current iteration, and the red line
indicating the minimum route length found up to the current iteration.

For K20, route length was reduced by 8, 2% and service time by 10, 7%, and for
K72, route length was reduced by 11, 7% and service time by 10, 6%. Assuming the
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current average salting cost per hour and that similar improvements can be expected
for the remaining roads VD has to maintain during the winter, we expect savings in
the order of 2,8 million DKK (about 380.000 Euros). This estimate does not include
savings due to the automation of route planning.

Concerning the route optimization procedure itself, there is still room for im-
provement in computation time. The result shown here were obtained on a standard
laptop and took 7h 28min (K18), 12h 41min (K20), and 71h 3min (K72). While
these are clearly substantial computation times, they are not unusual for such heuris-
tic procedures on complex problems. The computation time of almost three full days
for route K72 is a prime example, as this is the only route that requires two vehicles
to be serviced, resulting in a substantially increased processing time. However, the
focus of this research has been on demonstrating that substantial improvements of
the routes themselves are possible using this approach, without a big focus on com-
putation times, since these procedures are only run once in the rare event that the
routes are changed. Nonetheless, we believe that further testing and tuning of the
parameters would allow us to improve computation times.

6 Conclusions

This paper has shown how the Danish Road Directorate’s salt spreading can be
optimized by treating it as a Capacitated Arc Routing problem (CARP). Based
on CARPs categorisation as NP-hard, heuristic procedures were investigated and
a heuristic algorithm based on a Greedy Randomized Adaptive Search Procedure
(GRASP) was developed. In the proposed procedure, each iteration constructs a
solution which is further optimised by performing a local search with a Simulated
Annealing (SA) based heuristic algorithm. This is done by constructing an initial
solution with a Route Construction Algorithm (RCA), that incrementally traces a
route with the depot as the start and end node, in order to service the required
arcs with respect to a number of constraints and criteria at each iteration. The final
obtained solution of RCA is used to perform a Simulated Annealing (SA) based local
search, which improves the RCA-obtained solution by exchanging arcs in terms of
five different moves that define the solution space. When a move is performed,
a Route Improvement (RI) algorithm is used to rearrange and reconstruct a new
solution that, if better than the initial solution, is used as the new initial solution for
the next iteration. The final result becomes the best overall solution that is obtained
when the GRASP has reached one of the stop conditions. The proposed algorithms
were implemented and tested on three different service routes, showing that they
were able to improve the existing routing of all three test routes significantly. Future
work on this approach should focus on the reduction of the processing time, as well
as the inclusion of further parameters in the optimization, such as variable salting
widths or the inclusion of typical morning traffic conditions, when most salting
activities take place.
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